Digital finance has increasingly influenced the functioning and stability of industrial systems by reshaping interregional economic linkages. Based on panel data from 31 Chinese provinces spanning the period 2012–2021, this study investigates how the development of digital finance is associated with the spatial structure of industrial chain resilience. A modified gravity model is used to construct interprovincial interaction networks, and social network analysis is applied to examine their structural characteristics and temporal evolution. The empirical results show that the spatial network related to digital finance and industrial chain resilience has become progressively more connected over time, as reflected by a gradual increase in network density. However, substantial regional heterogeneity persists in network position and influence. Provinces with relatively advanced digital finance tend to occupy more central positions and exert stronger structural influence, whereas peripheral provinces remain weakly connected and play limited roles within the network. This asymmetric network configuration constrains the overall stability of the industrial chain system and highlights the importance of coordinated development in digital finance for improving systemic resilience.
Exposure to heavy metals during pregnancy poses significant health risks to both pregnant women and the developing fetus. This study aimed to conduct a comprehensive bibliometric analysis of global research on heavy metal exposure during pregnancy and its impact on fetal development over the past five decades (1974−2024). Data were retrieved from the Scopus database, yielding 173 English-language publications for analysis. Bibliometric mapping was performed using VOSviewer, while trend visualization and geographical analysis were conducted using Tableau to identify publication trends, research hotspots, and knowledge gaps. The results revealed a marked increase in research output beginning in 2010, with lead (Pb) and mercury (Hg) emerging as the most extensively investigated metals, followed by growing attention to arsenic (As), cadmium (Cd), and manganese (Mn). Prominent research themes focused on associations between prenatal heavy metal exposure and adverse birth outcomes, including low birth weight, preterm birth, and impaired neurodevelopment. Geographically, research output was dominated by the United States, China, and European countries, whereas contributions from low-income and high-exposure regions remained limited. Frequently occurring author keywords included heavy metals, pregnancy, and fetal development. These findings highlight the need for more targeted research in underrepresented regions and on emerging heavy metals, in alignment with global public health priorities and the Sustainable Development Goals (SDGs). Overall, this analysis provides strategic insights to inform future research directions and policy initiatives aimed at reducing prenatal heavy metal exposure and improving maternal and fetal health outcomes.
Studies on ChatGPT within the context of online consumer reviews (OCRs) have emerged as part of the broader exploration of generative AI across multiple disciplines. However, to date, no research has systematically examined the current research focus or other key aspects related to the application of ChatGPT in OCRs. To address this gap, this study conducts a systematic literature review to identify dominant research focus areas, highlight existing research gaps, and propose directions for future research. Guided by the PRISMA 2020 protocol and employing a thematic analysis approach, 22 relevant studies were analysed, revealing three overarching themes: (1) ChatGPT for review analytics, (2) ChatGPT for review modeling and evaluation, and (3) ChatGPT for review management. The findings indicate that current research primarily emphasizes ChatGPT’s potential as an analytical tool for OCR datasets, enabling the extraction of valuable and actionable insights for both marketers and researchers. In addition, the review identifies growing concern regarding fake reviews and highlights the emerging use of ChatGPT-generated synthetic reviews as datasets for developing fake review detection models, offering a practical alternative for studies facing challenges in obtaining high-quality training data. Finally, findings related to the third theme demonstrate ChatGPT’s utility in supporting managerial responses to customer reviews, providing insights into its role in enhancing customer relationship management. Overall, this review suggests that research on ChatGPT in OCRs remains at an early stage but offers significant insights and opportunities for future investigation in this emerging field.
Unplanned urban expansion poses significant challenges to sustainable territorial development in intermediate cities. This study analyzes the dynamics of urban expansion and land use change in the city of Cajamarca (Peru) during the period 1986−2040, integrating Geographic Information Systems (GIS) techniques, Google Earth Engine (GEE) and CA-Markov prediction models. Landsat satellite images from 1986, 2004 and 2022, classified by Random Forest (RF), were used to generate thematic maps and evaluate their accuracy. Subsequently, a spatial simulation model was implemented to project urban expansion to 2040. The results indicate an increase in the urban area from 789.68 hectares to 5,768.19 hectares, while forests and crops also changed. The driving factors for this expansion include rural-urban migration, the availability of services, and real estate development. Projections highlight growth toward the east, southeast, and south of the city. This approach provides strategic inputs for sustainable urban planning and effective land management in transforming Andean cities.
Unmanned aerial vehicles (UAVs) have gained increasing importance due to their expanding application areas and operational flexibility. Selecting the most suitable UAV, however, represents a complex multi-criteria decision-making (MCDM) problem that involves numerous technical and performance-related factors. This study addresses the UAV selection problem by employing four distinct MCDM approaches: Evidential fuzzy MCDM based on Belief Entropy, Intuitionistic Fuzzy Dempster-Shafer Theory (DST), Spherical Fuzzy Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS), and Type-2 Neutrosophic Fuzzy CRITIC-MABAC. Each method incorporates different fuzzy set theories, while a common seven-point linguistic scale is utilized to ensure consistency across models. The evaluation criteria were determined through a comprehensive literature review, and expert opinions were collected from experienced UAV pilots and technical personnel. The analysis identified the most suitable UAV alternative among the considered options. Sensitivity analyses were conducted to assess the robustness of the obtained results. The findings demonstrate that the proposed framework enables a simultaneous comparison of different fuzzy set environments on a unified linguistic scale. Overall, the results are consistent, reliable, and practically applicable, offering valuable insights and methodological contributions to the field of UAV selection and fuzzy MCDM applications.
The rapid growth of wealth-tech platforms has intensified the importance of digital trust, particularly among Generation Z investors who rely heavily on social media–driven information sources when making investment-related decisions. While prior studies have examined influencer marketing, electronic word-of-mouth (e-WOM), and social media engagement in fintech contexts, empirical research that integrates these persuasion mechanisms into a unified trust-based model of wealth-tech adoption intention remains limited. Drawing on Source Credibility Theory, Trust Transfer Theory, and digital engagement frameworks, this study proposes and tests an integrative model in which influencer credibility, e-WOM, and social media engagement simultaneously influence wealth-tech adoption Intention through the mediating role of digital trust. Using survey data collected from 255 Generation Z actual users of wealth-tech platforms in Indonesia, this study employs Structural Equation Modelling (SEM) to simultaneously test the measurement model and the proposed trust-based structural relationships, including the mediating role of digital trust. A purposive sampling approach was adopted to ensure respondents possessed direct experience with wealth-tech applications, thereby enhancing construct validity in this specialized digital investment context. The results indicate that influencer credibility, e-WOM, and social media engagement each exert a significant positive effect on digital trust, which in turn strongly influences wealth-tech adoption Intention. Digital trust is found to play a critical mediating role, reinforcing its central importance in investment-oriented digital platforms characterized by heightened perceived risk. This study contributes to the literature by extending digital trust and fintech adoption research in three ways: (1) by integrating multiple digital persuasion mechanisms into a single trust-centered framework, (2) by empirically validating digital trust as a key mediating mechanism in a wealth-tech investment context, and (3) by providing contextual insights from an emerging market characterized by rapid digital adoption and persistent trust challenges. Practically, the findings offer guidance for wealth-tech platforms and digital marketers in designing trust-enhancing strategies targeting Generation Z investors.
Climate change, which has intensified to a global governance crisis, demands adaptation strategies that are faster, precise, and more inclusive than ever before. Artificial intelligence (AI), increasingly positioned at the core of this transformation, is offering powerful tools for climate risk forecasting, disaster preparedness, energy optimization, agricultural efficiency, and business resilience. Yet the growing adoption of AI exposes a fundamental paradox: while it promises unprecedented analytical capacity, its benefits remain unevenly distributed across communities. The current study addressed this tension by presenting a comprehensive and governance-oriented analysis of AI-driven climate adaptation. Drawing on an extensive review of academic research and major institutional reports, this paper identified three interlinked challenges including methodological limitations, ethical and equity risks, as well as governance gaps which continuously undermine the effectiveness of AI-enabled adaptation. Predictive models struggled to incorporate complex social vulnerabilities; algorithmic opacity limited trust and accountability whereas persistent data inequality prevented low-income regions from leveraging advanced digital tools. In response, the study introduced a multi-layered governance framework encompassing technical capacity, regulatory and ethical infrastructure, and socially inclusive outcomes. The findings revealed that the contributions of AI to climate adaptation were fundamentally shaped by institutional quality, transparent data governance, equitable digital access, and participation of vulnerable populations in decision making. The paper concluded that AI held extraordinary potential to strengthen resilience, only if deployed within governance systems that prioritize fairness, accountability, transparency, ethics, and social inclusion. By aligning technological innovation with just and sustainable governance, AI becomes not only a predictive instrument but a transformative catalyst for equitable climate adaptation worldwide.
The digital transformation of commercial banks (DTCB) has altered the way financial institutions collect, process, and use information, with potential implications for firms’ investment behaviour. This study examines whether and how DTCB affects corporate investment efficiency using panel data on Chinese listed companies from 2013 to 2023. The results indicate that a higher level of DTCB is associated with a statistically significant improvement in corporate investment efficiency. Further analysis suggests that this effect operates primarily through two channels: a reduction in financing constraints and a decline in agency costs. The heterogeneity analysis shows that the positive effect of DTCB on investment efficiency is concentrated among privately owned firms, while no significant effect is observed for state-owned enterprises (SOEs). These findings provide evidence that the DTCB reshapes firms’ financing and governance environments in ways that influence investment outcomes. The study contributes to the literature on digital finance and corporate investment by offering firm-level empirical evidence on the economic consequences of banking digitalisation.
Endometriosis remains underdiagnosed due to reliance on invasive laparoscopy. Artificial Intelligence (AI) using either imaging or structured clinical data have shown promise, but single modality approaches face limitations in sensitivity, calibration, and clinical reliability. This work seeks to evaluate whether decision-level multimodal fusion of Magnetic Resonance Imaging (MRI)-based and clinical data-based AI systems improves diagnostic performance, calibration, and net clinical benefit, compared with single-modality models. Two previously validated models were combined with retrospective data from 1,208 patients with suspected endometriosis: a Dual U-Net trained on pelvic MRI with Gradient-weighted Class Activation Mapping (Grad-CAM) interpretability and a dense neural network trained on structured clinical features with SHapley Additive exPlanations (SHAP). This study tested weighted averaging, stacking via logistic regression, and confidence-gating. Performance was assessed using accuracy, precision, recall, F1-score, and area under the curve (AUC). Calibration was evaluated using the Brier score, expected calibration error (ECE), and reliability diagrams. Clinical utility was quantified with decision curve analysis (DCA). Statistical significance was tested with McNemar’s test for accuracy and DeLong’s test for AUC. Multimodal fusion outperformed both single modality models. Weighted averaging accuracy was 0.89, precision was 0.89, recall was 0.87, and F1-score was 0.86, thus improving on either modality alone. Stacking further enhanced calibration (ECE reduction from 0.8 to 0.04) and yielded higher net benefit across clinically relevant probability thresholds (20 to 60%). DCA indicated fusion would avoid 12 to 18 unnecessary surgical investigations per 100 patients, compared with single modality strategies. Confidence-gating maintained performance under simulated distribution shifts to support robustness. Decision-level multimodal fusion enhanced non-invasive diagnosis of endometriosis by improving accuracy, calibration, and clinical utility. These results demonstrated the value of integrative AI gynecological care and justify prospective validation in real-world clinical settings.
This research addresses the rapid advancements and exponential growth in academic research on the use of augmented reality (AR) and the metaverse in e-commerce. Through comprehensive bibliometric analysis, the research evaluates the performance of publications and citation metrics, uncovers influential works and collaborative networks, and explores thematic trends and researcher sentiments in this domain. Data from Scopus was analyzed using tools such as R, RStudio, BiblioShiny, VOSviewer, Tableau, and Python. In addition, sentiment analysis was conducted via Hugging Face’s DistilBERT model. The research findings highlight key themes, including the integration of AR and the metaverse in retail, online shopping, and mobile commerce, emphasizing the role of immersive technologies in transforming consumer experiences. This study identifies emerging trends and gaps, providing a roadmap for future research and strategic implementation. Sentiment analysis reveals a balanced outlook among researchers, with both enthusiasm for technological advancements and concerns over implementation challenges. The research offers valuable insights for researchers, publications, and the e-commerce industry, guiding informed decision-making, fostering innovation, and enhancing consumer experiences in the evolving landscape of AR and the metaverse in e-commerce.