Javascript is required
Search
Volume 2, Issue 3, 2024

Abstract

Full Text|PDF|XML
The stability of rock masses in large-scale hydropower projects and high-slope excavation engineering is significantly influenced by the unloading of confining pressure. This study investigates the triaxial creep behaviour of limestone under varying conditions of confining pressure unloading through systematic experimental research. Using a ZYSS2000C triaxial shear rheometer, limestone samples from the Qinling region were subjected to a series of triaxial creep tests with controlled unloading conditions. Experimental setups included varying single-step unloading magnitudes of confining pressure (2 MPa, 4 MPa, and 6 MPa) under constant axial stress. The results demonstrated that the magnitude of confining pressure unloading had a pronounced impact on creep behaviour. Larger unloading magnitudes led to shorter total creep durations and reduced cumulative deformation, highlighting the pivotal role of unloading intensity in governing creep characteristics. During the unloading creep process, the deviatoric stress of the rock decreased, and the deformation predominantly manifested as radial dilation. These findings provide new insights into the rock deformation mechanisms induced by confining pressure unloading and offer valuable theoretical and practical guidance for slope excavation and stability management.

Abstract

Full Text|PDF|XML
The free vibration characteristics of functionally graded porous (FGP) beams were investigated through the application of hyperbolic shear deformation theory (HSDT). The material properties were described using a modified rule of mixtures, incorporating the porosity volume fraction to account for various porosity distribution types, enabling the continuous variation of properties across the beam thickness. The kinematic relations for FGP beams were formulated within the framework of HSDT, and the governing equations of motion were derived using Hamilton’s principle. Analytical solutions for free vibration under simply supported boundary conditions were obtained using Navier’s method. Validation was conducted through comparisons with existing data, demonstrating the accuracy and reliability of the proposed approach. The effects of porosity distribution patterns, power-law indices, span-to-depth ratios, and vibrational mode numbers on the natural frequency values of FGP beams were comprehensively examined. The findings provide critical insights into the influence of porosity and geometric parameters on the dynamic behavior of functionally graded (FG) beams, offering a robust theoretical foundation for their design and optimization in advanced engineering applications.
Open Access
Research article
Special Issue
Enhanced Protection: Exploring the Penetration Resistance of Star Shape Auxetic Material
ioannis ntintakis ,
georgios e. stavroulakis ,
eirini stouraiti
|
Available online: 09-29-2024

Abstract

Full Text|PDF|XML
This study investigates the performance of star-shaped auxetic structures as protective materials in aluminum containers, designed to safeguard sensitive or hazardous materials during road transport. Finite element analysis (FEA) was conducted to assess the impact resistance of the star-shaped auxetic structure under high-speed collisions, simulating potential events such as explosions or sudden impacts. The simulations were performed using Autodesk's event simulation algorithm. In the first analysis, the auxetic structure was subjected to loading conditions applied to the metallic casing, while in the second, the metallic casing was considered rigid, with the focus placed on the structural behavior of the auxetic material under extreme stress conditions. Both scenarios examined the response of the auxetic structure in the plastic deformation region. The results indicate that the maximum stress developed in both loading cases approached 80 MPa. Notably, in the second scenario involving the rigid casing, the maximum displacement of the auxetic structure increased threefold compared to the first study. Despite the extreme loading conditions, the auxetic structure maintained significant cohesion, ultimately failing in a controlled manner. The ability of the star-shaped auxetic structure to absorb substantial impact loads is attributed to the twisting deformation of the structure, which redirects the applied stress towards the center of the impact area. These findings highlight the potential of star-shaped auxetic materials in providing enhanced protection for sensitive materials during transport, demonstrating their ability to withstand severe dynamic loading and to effectively dissipate energy upon impact.
This article is part of the Special Issue entitled Advanced Modeling of Processes in the Field of Dangerous Goods
Open Access
Research article
Restoring Force Model for Seismic Performance of Corroded Steel Frame Columns
pengfei wang ,
xiaofei wang ,
wei chen ,
jing shi
|
Available online: 09-29-2024

Abstract

Full Text|PDF|XML
Corrosion-induced damage significantly impairs the seismic performance of steel frame columns, leading to an increased vulnerability during earthquake events. To address this issue, a restoring force model was developed to accurately describe the seismic behaviour of corroded steel columns. Low-cycle repeated loading tests were conducted on corroded steel frame columns to evaluate the effects of corrosion and earthquake-induced damage on their seismic performance. The results revealed distinct degradation patterns, which were systematically analyzed. A cyclic degradation index was proposed to quantify the impact of corrosion on critical parameters, including yield strength, hardening stiffness, unloading stiffness, and reloading stiffness. This index was incorporated into a damage model, which facilitated the formulation of a comprehensive restoring force model for corroded steel frame columns. The developed model was validated through case studies, demonstrating its effectiveness in predicting the seismic response of corroded columns. The findings underscore the importance of considering corrosion damage in the assessment and design of steel frame columns subjected to seismic loading, providing a more accurate and reliable approach for seismic performance evaluation.

Abstract

Full Text|PDF|XML
Earthquakes, characterized by unpredictable seismic events, release substantial lateral energy, which propagates through structures, often causing significant damage before the motion subsides. In the absence of specific seismic design guidelines in the British Standards (BS), the introduction of the Eurocode has provided a more comprehensive framework for seismic resistance. Although Sarawak, Malaysia, is situated in a low seismic hazard zone, the effects of seismic forces on structures that are not explicitly designed for seismic resistance remain poorly understood and under-researched. This study employs SAP2000 software to conduct nonlinear pushover analysis (POA) and nonlinear time history analysis (NTHA) on medium-rise reinforced concrete (RC) and steel frame buildings subjected to lateral forces and dynamic ground motions scaled to the local seismic intensity, in accordance with Eurocode 8 (EC 8). The seismic responses of different structural models, incorporating various bracing configurations, were compared to evaluate the relative performance of each system. The influence of material type and bracing configuration on structural behavior under seismic loading was examined. The results suggest that, among the configurations analyzed, the RC frame with central inverted V-bracing (Model 1) exhibits superior seismic performance in terms of lateral stiffness, displacement control, and energy dissipation, positioning it as the most optimal design solution for the study's conditions. This investigation highlights the critical role of structural design and bracing configuration in enhancing the seismic resilience of buildings, even in regions with relatively low seismic risk.
- no more data -