Javascript is required
1.
J. P. Rodrigue, The Geography of Transport Systems, fifth edition. Milton: Taylor and Francis Group, 2020. [Google Scholar]
2.
K. E. Evans, “Auxetic polymers: A new range of materials,” Endeavour, vol. 15, no. 4, pp. 170–174, 1991. [Google Scholar] [Crossref]
3.
S. Burns, “Negative poisson’s ratio materials,” Science, vol. 238, no. 4826, p. 551, 1987. [Google Scholar] [Crossref]
4.
R. Lakes, “Foam structures with a negative poisson’s ratio,” Science, vol. 235, no. 4792, pp. 1038–1040, 1987. [Google Scholar] [Crossref]
5.
C. Yang, H. D. Vora, and Y. Chang, “Behavior of auxetic structures under compression and impact forces,” Smart Mater. Struct., vol. 27, no. 2, p. 025012, 2018. [Google Scholar] [Crossref]
6.
G. Imbalzano, P. Tran, T. D. Ngo, and P. V. S. Lee, “A numerical study of auxetic composite panels under blast loadings,” Compos. Struct., vol. 135, pp. 339–352, 2016. [Google Scholar] [Crossref]
7.
G. Imbalzano, S. Linforth, T. D. Ngo, P. V. S. Lee, and P. Tran, “Blast resistance of auxetic and honeycomb sandwich panels: Comparisons and parametric designs,” Compos. Struct., vol. 183, pp. 242–261, 2018. [Google Scholar] [Crossref]
8.
G. Imbalzano, P. Tran, T. D. Ngo, and P. V. Lee, “Three-dimensional modelling of auxetic sandwich panels for localised impact resistance,” J. Sandw. Struct. Mater., vol. 19, no. 3, pp. 291–316, 2017. [Google Scholar] [Crossref]
9.
S. C. Han, D. S. Kang, and K. Kang, “Two nature-mimicking auxetic materials with potential for high energy absorption,” Mater. Today, vol. 26, pp. 30–39, 2018. [Google Scholar] [Crossref]
10.
A. Alomarah, S. Xu, S. H. Masood, and D. Ruan, “Dynamic performance of auxetic structures: Experiments and simulation,” Smart Mater. Struct., vol. 29, no. 5, p. 055031, 2020. [Google Scholar] [Crossref]
11.
R. R. Madke and R. Chowdhury, “Anti-impact behavior of auxetic sandwich structure with braided face sheets and 3D re-entrant cores,” Compos. Struct., vol. 236, p. 111838, 2020. [Google Scholar] [Crossref]
12.
G. E. Stavroulakis, “Auxetic behaviour: Appearance and engineering applications,” Phys. Status Solidi B, vol. 242, no. 3, pp. 710–720, 2005. [Google Scholar] [Crossref]
13.
P. S. Theocaris, G. E. Stavroulakis, and P. D. Panagiotopoulos, “Negative poisson’s ratios in composites with star-shaped inclusions: A numerical homogenization approach,” Arch. Appl. Mech., vol. 67, no. 4, pp. 274–286, 1997. [Google Scholar] [Crossref]
14.
L. Wei, X. Zhao, Q. Yu, and G. Zhu, “A novel star auxetic honeycomb with enhanced in-plane crushing strength,” Thin-Walled Struct., vol. 149, p. 106623, 2020. [Google Scholar] [Crossref]
15.
M. F. Ashby and D. R. H. Jones, Engineering Materials 1: An Introduction to Properties, Applications, and Design, 4th ed. Boston, Mass: Butterworth-Heinemann, 2012. [Google Scholar]
16.
L. J. Gibson, “Cellular solids,” MRS Bull., vol. 28, no. 4, pp. 270–274, 2003. [Google Scholar] [Crossref]
17.
L. Yang, M. Ye, Y. Huang, and J. Dong, “Mechanics characteristics of a 3D star-shaped negative poisson’s ratio composite structure,” Materials, vol. 16, no. 11, p. 3950, 2023. [Google Scholar] [Crossref]
18.
Y. Wang, N. A. Alsaleh, J. Djuansjah, H. Hassanin, M. A. El-Sayed, and K. Essa, “Tailoring 3D star-shaped auxetic structures for enhanced mechanical performance,” Aerospace, vol. 11, no. 6, p. 428, 2024. [Google Scholar] [Crossref]
19.
R. G. Mifsud, G. A. Muscat, J. N. Grima-Cornish, K. K. Dudek, M. A. Cardona, A. Daphne, P. S. Farrugia, R. Gatt, K. E. Evans, and J. N. Grima, “Auxetics and FEA: Modern materials driven by modern simulation methods,” Materials, vol. 17, no. 7, p. 1506, 2024. [Google Scholar] [Crossref]
20.
G. Tairidis, I. Ntintakis, G. Drosopoulos, P. Koutsianitis, and G. Stavroulakis, “Auxetic metamaterials subjected to dynamic loadings,” Theor. Appl. Mech., vol. 49, no. 1, pp. 1–14, 2022. [Google Scholar] [Crossref]
  • statusCode :500
  • fatal :false
  • unhandled :false
  • __nuxt_error :true