This study explores the durability of plasticized polyvinyl chloride (PVC-P) geomembranes in hydraulic engineering anti-seepage structures, particularly under varying operational temperature conditions. Employing accelerated thermal air aging tests on three distinct PVC-P geomembrane variants, the study assesses their mechanical properties, specifically axial tensile strength, using an electronic universal testing machine. A comprehensive thermal air aging model, based on the Arrhenius equation, has been developed, offering insights into the lifespan prediction of these geomembranes. Results demonstrate that factors such as annual average temperature, plasticizer content, and membrane thickness significantly influence the geomembranes' service life. Post-aging observations include a notable yellowing and increased brittleness of the geomembranes, coupled with a decline in tensile strength and elongation. Elongations exhibit a decreasing trend, aligning with a first-order degradation kinetics equation. Under conditions of 50℃ over a period of 120 days, the elongation of polyvinyl chloride (PVC)-HX, PVC2.0-JT, and PVC2.5-JT geomembranes was reduced to 255.88%, 430.11%, and 434.58%, respectively. Predictions indicate that at an operational temperature of 20℃, the expected lifespans for these geomembranes are 19, 45, and 48 years, with material failure correlating to plasticizer loss rates of 58.2%, 32.5%, and 24.8%, respectively. These findings offer valuable guidance for the selection of geomembrane materials in hydraulic engineering projects, considering various designed service durations.