Perovskite solar cells (PSCs) have garnered significant attention in recent years due to their promising potential in photovoltaic applications. Ongoing research aims to enhance the efficiency, stability, and overall performance of PSCs. This study proposes the integration of copper-based metal-organic frameworks (Cu-MOFs) to address critical issues such as inadequate light absorption, instability, and suboptimal power conversion efficiency. Cu-MOFs, synthesized via the hydrothermal method at varying concentrations, have demonstrated an ability to mitigate defects in perovskite films and enhance charge transport. The structural versatility of Cu-MOFs allows for the development of new composites with improved stability and efficiency. By selecting the optimal MOF, hole transport layer (HTL), and counter-electrode materials, the performance of PSCs can be significantly improved. This research focuses on the functionalization of Cu-MOFs within PSCs to boost their efficiency. MOFs, which are porous materials composed of organic and inorganic components, are increasingly utilized in various fields including catalysis, energy storage, pollution treatment, and detection, due to their large surface area, tunable pore size, and adjustable pore volume. Despite their potential, the application of MOFs in aqueous environments has been limited by their poor performance. However, through techniques such as X-ray diffraction (XRD), UV-Vis spectroscopy, Raman spectroscopy, and scanning electron microscopy (SEM), it has been confirmed that Cu-MOFs can be successfully modified. Post-hydrothermal treatment, SEM results indicate enhanced stability and functionality of Cu-MOFs. The integration of Cu-MOFs in PSCs is expected to reduce energy consumption and significantly enhance the efficiency of these solar cells.