Javascript is required
Search
Volume 2, Issue 4, 2024
Open Access
Research article
A Three-Phase Algorithm for Selecting Optimal Investment Options Based on Financial Ratios of Stock Companies
zahra joorbonyan ,
sapan kumar das ,
seyed ali noorkhah ,
ali sorourkhah
|
Available online: 10-19-2024

Abstract

Full Text|PDF|XML
The identification of optimal stock or portfolio options is a critical concern for investors aiming to maximize profitability within financial markets. With the increasing complexity of available alternatives and the growing volume of financial data, selecting the most suitable investment has become more challenging. Decision-makers often face difficulties in navigating these vast data sets and require robust support tools to simplify and enhance the decision-making process. This study proposes a three-phase approach designed to reduce data complexity and facilitate more detailed analysis. In the initial phase, firms demonstrating low operational efficiency, as indicated by their inventory turnover ratio, were excluded from further consideration. In the subsequent phase, data envelopment analysis (DEA) was employed to assess the efficiency of remaining firms, with those exhibiting efficiency scores lower than one being removed from further investigation. Finally, the third phase involved determining the relative importance of each financial ratio through the calculation of their respective weights, allowing for the ranking of firms based on these adjusted values. The results of this approach provide decision-makers with a refined list of viable investment options, contributing to more informed stock portfolio optimization decisions.

Abstract

Full Text|PDF|XML

The inherent hierarchical and decentralized nature of decision-making within banking systems presents significant challenges in evaluating operational efficiency. This study introduces a novel bi-level programming (BLP) framework, incorporating Stackelberg equilibrium dynamics, to assess the performance of bank branches. By combining with data envelopment analysis (DEA), the proposed BLP-DEA model captures the leader-follower relationship that characterizes banking operations, wherein the leader focuses on marketability and the follower prioritizes profitability. A case study involving 15 Iranian bank branches was employed to demonstrate the model’s capacity to evaluate performance comprehensively at both decision-making levels. The results underscore the model's effectiveness in identifying inefficiencies, analyzing cost structures, and providing actionable insights for performance optimization. This approach offers a robust tool for addressing the complexities associated with decentralized decision-making in hierarchical organizations. The findings have significant implications for both theoretical development and practical application, especially in the context of improving the operational efficiency of banking institutions.

Abstract

Full Text|PDF|XML
In today’s volatile and competitive global markets, organizations face numerous challenges to their survival and growth. To navigate these challenges effectively, the adoption of future-oriented, environment-based planning strategies is essential. Such strategies must not only address the identification of key environmental factors but also assess their long-term impacts on the organization, alongside its interaction with these external variables. The survival and sustainable development of an organization depend on a timely understanding of emerging opportunities and market dynamics, the formulation of strategic plans, and the selection of appropriate, effective strategies. This study presents an integrated model designed to evaluate the factors influencing a construction company’s performance, with a focus on conducting a comprehensive risk analysis. The model prioritizes and quantifies the significance of each element within the strengths, weaknesses, opportunities, and threats (SWOT) analysis of the company’s operational context. Furthermore, two fuzzy logic-based Multiple-Attribute Decision-Making (MADM) methods, namely the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and the Analytic Hierarchy Process (AHP), were employed to rank the identified factors. Based on the analysis of the collected data, the final strategic course for the company was derived. The results indicated that the TOPSIS method placed a greater emphasis on the organization's strengths and opportunities, while the AHP approach, despite prioritizing long-term safety considerations, underscored the significance of addressing weaknesses and mitigating threats. This research contributes to the understanding of how fuzzy MADM techniques can be applied to strategic planning in the construction industry, facilitating more informed decision-making processes that align with the evolving demands of the market and ensure organizational resilience.
Open Access
Research article
Special Issue
Risk Assessment in the Transportation of Dangerous Goods: Application of ALOHA and GIS Tools in Montenegro
milanko damjanović ,
aleksandra petrović ,
vladimir ilić ,
marko radetić ,
predrag stanojević
|
Available online: 12-23-2024

Abstract

Full Text|PDF|XML
The transportation of dangerous goods (DG) presents significant risks due to their hazardous chemical properties, which, in the event of an accident, can have detrimental effects on the environment, public health, and infrastructure. Although the transport of such materials is generally prohibited, the growing demand for DG transportation over long distances necessitates compliance with stringent international regulations (e.g., ADR, RID). In urban areas, where transport routes may intersect with residential zones, incidents involving DG can lead to severe consequences, including fatalities, environmental damage, evacuation of local populations, and disruptions to traffic. To mitigate these risks, effective risk management is essential, encompassing analysis, assessment, and reduction strategies. Risk assessment for DG transport can be conducted using various quantitative and qualitative methods, with this study employing the Areal Locations of Hazardous Atmospheres (ALOHA) software and Geographic Information System (GIS) tools for both risk evaluation and visualization. The study area is located in the capital of Montenegro, specifically within the Stari Aerodrom District. This research focuses on evaluating the potential impact of DG transport incidents in this area and the consequences of hazardous material releases in confined spaces. Three specific DGs—benzene, chlorine, and methane—are considered, each presenting distinct environmental, health, and property-related risks. Chlorine is selected as the worst-case scenario, with its impact radius extending approximately 10 km from the release point. The primary objective of this study is to provide a comprehensive assessment of the risks associated with DG transportation, highlighting the importance of safety improvements and effective emergency response strategies. The findings underscore the need for enhanced safety measures during transport and the development of more robust emergency management frameworks for DG-related incidents.
This article is part of the Special Issue entitled Advanced Modeling of Processes in the Field of Dangerous Goods
- no more data -