The identification of optimal stock or portfolio options is a critical concern for investors aiming to maximize profitability within financial markets. With the increasing complexity of available alternatives and the growing volume of financial data, selecting the most suitable investment has become more challenging. Decision-makers often face difficulties in navigating these vast data sets and require robust support tools to simplify and enhance the decision-making process. This study proposes a three-phase approach designed to reduce data complexity and facilitate more detailed analysis. In the initial phase, firms demonstrating low operational efficiency, as indicated by their inventory turnover ratio, were excluded from further consideration. In the subsequent phase, data envelopment analysis (DEA) was employed to assess the efficiency of remaining firms, with those exhibiting efficiency scores lower than one being removed from further investigation. Finally, the third phase involved determining the relative importance of each financial ratio through the calculation of their respective weights, allowing for the ranking of firms based on these adjusted values. The results of this approach provide decision-makers with a refined list of viable investment options, contributing to more informed stock portfolio optimization decisions.
In today’s volatile and competitive global markets, organizations face numerous challenges to their survival and growth. To navigate these challenges effectively, the adoption of future-oriented, environment-based planning strategies is essential. Such strategies must not only address the identification of key environmental factors but also assess their long-term impacts on the organization, alongside its interaction with these external variables. The survival and sustainable development of an organization depend on a timely understanding of emerging opportunities and market dynamics, the formulation of strategic plans, and the selection of appropriate, effective strategies. This study presents an integrated model designed to evaluate the factors influencing a construction company’s performance, with a focus on conducting a comprehensive risk analysis. The model prioritizes and quantifies the significance of each element within the strengths, weaknesses, opportunities, and threats (SWOT) analysis of the company’s operational context. Furthermore, two fuzzy logic-based Multiple-Attribute Decision-Making (MADM) methods, namely the Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) and the Analytic Hierarchy Process (AHP), were employed to rank the identified factors. Based on the analysis of the collected data, the final strategic course for the company was derived. The results indicated that the TOPSIS method placed a greater emphasis on the organization's strengths and opportunities, while the AHP approach, despite prioritizing long-term safety considerations, underscored the significance of addressing weaknesses and mitigating threats. This research contributes to the understanding of how fuzzy MADM techniques can be applied to strategic planning in the construction industry, facilitating more informed decision-making processes that align with the evolving demands of the market and ensure organizational resilience.