Javascript is required
Search
Volume 3, Issue 3, 2024

Abstract

Full Text|PDF|XML

Electricity remains one of the most vital resources for industrial, domestic, and agricultural applications. However, electricity theft has emerged as a significant challenge, contributing to substantial power losses and severe economic repercussions for utility companies. This study examines the role of smart meters (SMs) in minimizing electricity theft and reducing energy losses by transitioning from traditional analogue meters to advanced SMs equipped with automated billing and metering systems. Data collected from the SM system in the Akre energy distribution network reveal that, following the implementation of SMs, overall electrical power losses were reduced by 17.1%, while theft incidents decreased by 96.4%. These results demonstrate that the deployment of SMs significantly contributes to lowering total power losses and yields considerable financial benefits for both utility providers (UPs) and consumers. Moreover, the system enhances the ability to remotely monitor and control customer meters, allowing continuous oversight of meter readings without requiring physical visits. This remote functionality strengthens theft prevention measures, improves grid reliability, and reduces operational costs. The findings highlight the potential of the SM system in advancing power efficiency and promoting a more secure and cost-effective energy distribution network.

Abstract

Full Text|PDF|XML
Underwater gliders have become a focal point in marine research due to advancements in maritime technologies and the increasing demand for versatile autonomous underwater vehicles (AUVs) in applications such as oceanography, environmental monitoring, and marine surveillance. This study provides a comprehensive analysis of the critical parameters influencing the gliding behavior of a newly designed AUV model, simulated using ANSYS Fluent. In this study, two essential gliding parameters were investigated: the critical angle of attack and the optimum wingspan. The model was fully submerged, and a three-dimensional representation of the AUV was employed to replicate realistic underwater dynamics. Navier-Stokes equations, coupled with continuity equations, were numerically solved to ensure mass and momentum conservation across the simulated environment. The model was rigorously validated against published experimental data, thereby establishing reliability in the simulated outcomes. The results reveal an optimum angle of attack that significantly enhances the glider’s maneuverability, facilitating efficient ascent and descent adjustments by the automated control system to navigate precise underwater positions. These findings contribute valuable insights for designing AUVs with enhanced autonomous control and efficient gliding capabilities, aiding in the effective application of AUVs across a range of marine environments.

Abstract

Full Text|PDF|XML
To address the rate mismatch between high-bandwidth, high-sampling-rate analog-to-digital converters (ADCs) and low-bandwidth, low-sampling-rate baseband processors, digital signal processing techniques were employed to enable the parallel processing of broadband signals. The broadband signals were decomposed into multiple narrowband channels, facilitating parallel processing and frequency-selective analysis of signals. The validity of the principle was verified through MATLAB modeling. A digital channelization Register Transfer Level (RTL) model was constructed on a Field-Programmable Gate Array (FPGA) using Verilog Hardware Description Language (HDL), implementing a pipelined parallel processing mechanism. The computational efficiency in Fast Fourier Transform (FFT) operations was improved by optimizing the processing flow. A digital channelization receiver application test board was developed using a domestically produced FMQL45T900 FPGA as the core component. Practical applications confirmed the correctness of the approach, with significant improvements in power efficiency compared to methods reported in existing literature, thereby enhancing overall parallel processing performance. This method demonstrates broad applicability in fields such as military communications, broadcasting, radar navigation systems, and more.

Abstract

Full Text|PDF|XML

The environmental conditions in large-scale, intensive poultry farming systems require high precision, and accurate prediction of environmental factors is critical for effective control. Existing control methods generally focus on the prediction and control of individual environmental factors without considering the interdependencies among these factors, leading to low prediction and control accuracy. To address the complex nature of the environmental system in poultry houses, characterised by multi-factor dependencies, an adaptive environmental control system based on Multi-feature Long Short-Term Memory (Multif-LSTM) was proposed. The Multif-LSTM model within the system calculates the dependencies between environmental factors using correlation coefficients and establishes a multi-input, multi-output neural network architecture. External climate factors are also incorporated during the input phase. Experimental comparisons conducted in a duck house environment, with Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) models, show that the Multif-LSTM model outperforms others in terms of prediction accuracy. For NH3 concentration, the Root Mean Square Error (RMSE), the Mean Absolute Percentage Error (MAPE), and Coefficient of Determination (R2) values are 1.34, 8.3, and 0.55, respectively; for temperature, they are 0.29, 2.83, and 0.98; and for relative humidity, they are 1.73, 2.46, and 0.95, respectively. Compared to the average performance of the RNN and LSTM models, the RMSE is reduced by 2.5, MAPE by 4.6, and R2 increased by 0.32. The results demonstrate that the Multif-LSTM model achieves higher prediction accuracy and is suitable for high-precision adaptive environmental control in poultry houses.

Open Access
Research article
Development and Application of an Electronic Nose System for Classifying Coffee Varieties Based on Aromatic Profiles
danang erwanto ,
royb fatkhur rizal ,
dian efytra yuliana ,
misbahul munir ,
yuki trisnoaji ,
catur harsito ,
abram anggit mahadi ,
singgih dwi prasetyo
|
Available online: 09-29-2024

Abstract

Full Text|PDF|XML

Indonesia, a significant exporter of coffee, faces persistent challenges in accurately identifying and classifying coffee varieties based on aromatic characteristics, primarily due to the subjective variability of human sensory evaluation. To address these limitations, an electronic nose (e-nose) system was developed for the classification of coffee varieties through the analysis of aromatic profiles. The system integrates a DHT-22 sensor and four gas sensors (MQ-5, MQ-4, MQ-3, and MQ-135) to measure humidity, temperature, and gas concentrations from coffee vapor. Data acquisition was facilitated by the Arduino Uno platform, while classification was conducted using the Naive Bayes Classifier (NBC) algorithm. The e-nose achieved a classification accuracy of 82.2%, as validated through a confusion matrix and performance metrics, including precision, recall, and F1-score. Among the gas sensors employed, the MQ-4 sensor, which detects methane, demonstrated the highest response sensitivity, whereas the MQ-3 sensor, designed to detect alcohol, exhibited the lowest. This system significantly mitigates the inherent subjectivity associated with traditional aroma assessment methods and offers considerable potential for enhancing quality control protocols in coffee production processes. Future work will focus on integrating advanced machine-learning algorithms, optimizing sensor array performance, and expanding the dataset to include a broader diversity of coffee samples. These advancements are expected to further refine the system's classification capabilities and contribute to more robust quality assurance in the coffee industry.

- no more data -