Javascript is required
Search
Volume 2, Issue 3, 2024

Abstract

Full Text|PDF|XML
Job scheduling for a single machine (JSSM) remains a core challenge in manufacturing and service operations, where optimal job sequencing is essential to minimize flow time, reduce delays, prioritize high-value tasks, and enhance overall system efficiency. This study addresses JSSM by developing a hybrid solution aimed at balancing multiple performance objectives and minimizing overall processing time. Eight established scheduling rules were examined through a comprehensive simulation based on randomly generated scenarios, each defined by three parameters: processing time, customer weight, and job due date. Performance was evaluated using six key metrics: flow time, total delay, number of delayed jobs, maximum delay, average delay of delayed jobs, and average weight of delayed jobs. A multi-criteria decision-making (MCDM) framework was applied to identify the most effective scheduling rule. This framework combines two approaches: the Analytic Hierarchy Process (AHP), used to assign relative importance to each criterion, and the Evaluation based on Distance from Average Solution (EDAS) method, applied to rank the scheduling rules. AHP weights were determined by surveying expert assessments, whose averaged responses formed a consensus on priority ranking. Results indicate that the Earliest Due Date (EDD) rule consistently outperformed other rules, likely due to the high weighting of delay-sensitive criteria within the AHP, which positions EDD favourably in scenarios demanding stringent adherence to deadlines. Following this initial rule-based scheduling phase, an optimization stage was introduced, involving four Tabu Search (TS) techniques: job swapping, block swapping, job insertion, and block insertion. The TS optimization yielded marked improvements, particularly in scenarios with high job volumes, significantly reducing delays and improving performance metrics across all criteria. The adaptability of this hybrid MCDM framework is highlighted as a primary contribution, with demonstrated potential for broader application. By adjusting weights, criteria, or search parameters, the proposed method can be tailored to diverse real-time scheduling challenges across different sectors. This integration of rule-based scheduling with metaheuristic search underscores the efficacy of hybrid approaches for complex scheduling problems.
Open Access
Research article
Computational Fluid Dynamics Evaluation of Nitrogen and Hydrogen for Enhanced Air Conditioning Efficiency
yuki trisnoaji ,
singgih dwi prasetyo ,
mochamad subchan mauludin ,
catur harsito ,
abram anggit
|
Available online: 09-29-2024

Abstract

Full Text|PDF|XML

This study evaluates the potential of nitrogen and hydrogen as alternative working fluids in air conditioning systems to improve thermal comfort and optimize energy efficiency, using computational fluid dynamics (CFD) simulations. A controlled indoor environment measuring 6 m $\times$ 4.5 m $\times$ 3 m was simulated, with nitrogen and hydrogen tested at inlet velocities of 0.7 m/s, 0.8 m/s, 0.9 m/s, 1.0 m/s, and 1.1 m/s, and an inlet temperature fixed at 293 K (20℃). The analysis focused on the impact of these gases on room and outlet temperatures to assess airflow distribution, heat transfer, and thermal comfort compared to traditional air-based systems. Results indicated that nitrogen improved airflow uniformity and facilitated heat transfer but exhibited limitations in effectively reducing room temperature due to its thermal properties. In contrast, hydrogen demonstrated stable outlet temperatures across all velocities, benefiting from its higher thermal conductivity; however, room temperatures showed significant variation, particularly at higher inlet velocities. Temperature prediction errors in the CFD model ranged from 0.003% to 2.78%, suggesting high accuracy yet underscoring the need for refinement in simulation methods. The findings highlight the promise of nitrogen and hydrogen in optimizing air conditioning system performance but emphasize the necessity for further investigation into the practical implications, specifically regarding operational safety, energy efficiency, and environmental impacts.

- no more data -