In this study, a novel methodology is proposed for ranking the knowledge economies of European Union (EU) countries, leveraging their positioning within the global knowledge index (GKI). The GKI, encompassing seven pivotal indicators, serves as a benchmark for assessing a nation's knowledge economy. The EU, a prominent political and economic conglomerate, forms the focal point of this analysis. A multi-criteria analysis approach is adopted, wherein the Entropy method is utilized to determine the significance of individual GKI indicators. Additionally, the CRADIS (Compromise Ranking of Alternatives from Distance to Ideal Solution) method is employed for the ranking of these nations. The Entropy method, renowned for its efficacy in subjective weight determination, and the CRADIS method, a novel multi-criteria analysis tool yielding results based on deviations from the ideal and anti-ideal solutions, are integrated. This integration is pivotal, as it offers results comparable with other multi-criteria methodologies. The analysis reveals that Research Development and Innovation emerges as the most critical indicator. According to the CRADIS method, Sweden is identified as the leading country in terms of GKI indicators, followed by Finland and Denmark. This trend underscores a superior performance of the northern EU countries. Conversely, Eastern EU countries are observed to lag in their GKI standings. These findings are corroborated through comparative and sensitivity analyses, highlighting the influence of normalization on country rankings and pinpointing specific indicators necessitating enhancement for bolstering the knowledge economy. This research not only aids EU countries in identifying their strengths and weaknesses in the realm of knowledge economy but also serves as a strategic guide for policymakers. It provides actionable insights for fostering knowledge economy development, emphasizing the need for strengthening existing advantages and addressing shortcomings. Such strategic initiatives are crucial for enhancing global market competitiveness. The study's outcomes, therefore, offer valuable resources for decision-making in policy and economic development contexts.
In the field of computer vision and digital image processing, the division of images into meaningful segments is a pivotal task. This paper introduces an innovative global image segmentation model, distinguished for its ability to segment pixels with intensity inhomogeneity and robustly handle noise. The proposed model leverages a combination of randomness measurement and spatial techniques to accurately segment regions within and outside contours in challenging conditions. Its efficacy is demonstrated through rigorous testing with images from the Berkeley image database. The results significantly surpass existing methods, particularly in the context of noisy and intensity inhomogeneous images. The model's proficiency lies in its unique ability to differentiate between minute, yet crucial, details and outliers, thus enhancing the precision of global segmentation in complex scenarios. This advancement is particularly relevant for images plagued by unknown noise distributions, overcoming limitations such as the inadequate handling of convex images at local minima and the segmentation of images corrupted by additive and multiplicative noise. The model's design integrates a region-based active contour method, refined through the incorporation of a local similarity factor, level set method, partial differential equations, and entropy considerations. This approach not only addresses the technical challenges posed by image segmentation but also sets a new benchmark for accuracy and reliability in the field.