Radar warning receivers (RWRs) are critical for swiftly and accurately identifying potential threats in complex electromagnetic environments. Numerous methods have been developed over the years, with recent advances in artificial intelligence (AI) significantly enhancing RWR capabilities. This study presents a machine learning-based approach for emitter identification within RWR systems, leveraging a comprehensive radar signal library. Key parameters such as signal frequency, pulse width, pulse repetition frequency (PRF), and beam width were extracted from pulsed radar signals and utilized in various machine learning algorithms. The preprogramming phase of RWRs was optimized through the application of multiple classification algorithms, including k-Nearest Neighbors (KNN), Decision Tree (DT), the ensemble learning method, support vector machine (SVM), and Artificial Neural Network (ANN). These algorithms were compared against conventional methods to evaluate their performance. The machine learning models demonstrated a high degree of accuracy, achieving over 95% in training phases and exceeding 99% in test simulations. The findings highlight the superiority of machine learning algorithms in terms of speed and precision when compared to traditional approaches. Furthermore, the flexibility of machine learning techniques to adapt to diverse problem sets underscores their potential as a preferred solution for future RWR applications. This study suggests that the integration of machine learning into RWR emitter identification not only enhances the operational efficiency of electronic warfare (EW) systems but also represents a significant advancement in the field. The increasing relevance of machine learning in recent years positions it as a promising tool for addressing complex signal processing challenges in EW.