Javascript is required
Search
/
/
International Journal of Knowledge and Innovation Studies
IDA
International Journal of Knowledge and Innovation Studies (IJKIS)
JAFAS
ISSN (print): 3005-6098
ISSN (online): 3005-6101
Submit to IJKIS
Review for IJKIS
Propose a Special Issue
Current State
Issue
Volume
2025: Vol. 3
Archive
Home

International Journal of Knowledge and Innovation Studies (IJKIS) serves as a distinguished platform in the realms of knowledge creation and innovative practices, setting itself apart from other journals in its field through a unique blend of peer-reviewed, open-access content. IJKIS is dedicated to advancing the academic exploration of knowledge dissemination and innovative methodologies, highlighting its critical role in shaping modern intellectual and practical landscapes. The journal distinguishes itself by focusing not only on the theoretical aspects of knowledge and innovation but also on their real-world applications and impacts. Published quarterly by Acadlore, the journal typically releases its four issues in March, June, September, and December each year.

  • Professional Service - Every article submitted undergoes an intensive yet swift peer review and editing process, adhering to the highest publication standards.

  • Prompt Publication - Thanks to our proficiency in orchestrating the peer-review, editing, and production processes, all accepted articles see rapid publication.

  • Open Access - Every published article is instantly accessible to a global readership, allowing for uninhibited sharing across various platforms at any time.

Editor(s)-in-chief(2)
adis puška
Government of the Brcko District of BiH, Bosnia and Herzegovina
adispuska@yahoo.com | website
Research interests: Quantitative Economics; Supply Chain; Tourism; Marketing and Higher Education
tichun wang
Nanjing University of Aeronautics and Astronautics, China
wangtichun2010@nuaa.edu.cn | website
Research interests: Knowledge Engineering; Intelligent Design; Data Mining

Aims & Scope

Aims

International Journal of Knowledge and Innovation Studies (IJKIS) is an avant-garde platform dedicated to pioneering and promoting groundbreaking research at the intersection of knowledge creation, dissemination, and innovative practice. The mission of IJKIS is to promote holistic understanding of knowledge dynamics, foster global collaborations among academia, industry, and policymakers, and advance theory and practical applications in knowledge and innovation. We welcome original submissions in various forms, including reviews, regular research papers, and short communications as well as Special Issues on particular topics. The journal encourages contributions related to a broad spectrum of areas, encompassing philosophical and sociological explorations of knowledge and innovation, technological advancements such as AI and digital platforms, organizational strategies, global perspectives, interdisciplinary approaches, and ethical considerations in the context of knowledge creation, dissemination, and innovation, thereby fostering a comprehensive understanding of these interconnected domains and their implications for society.

The aim of IJKIS is to be a premier outlet for thought leadership, scholarly rigor, and practical relevance, setting new standards and directions for research and discussions on knowledge and innovation. Therefore, the journal has no restrictions regarding the length of papers. Full details should be provided so that the results can be reproduced. In addition, the journal has the following features:

  • Every publication benefits from prominent indexing, ensuring widespread recognition.

  • A distinguished editorial team upholds unparalleled quality and broad appeal.

  • Seamless online discoverability of each article maximizes its global reach.

  • An author-centric and transparent publication process enhances submission experience.

Scope

The scope of the journal covers, but is not limited to the following topics:

  • Foundations of Knowledge and Innovation: This includes philosophical, sociological, and psychological aspects of knowledge, exploring how these foundational elements drive innovation and affect knowledge production and dissemination.

  • Technological Drivers & Digital Innovations: Focuses on the impact of AI, big data, and emerging technologies on knowledge systems; the role of digital platforms in e-learning and virtual knowledge sharing; cybersecurity, privacy, and trust issues in the digital knowledge era.

  • Organizational Knowledge and Business Innovations: Examines knowledge management within organizations, strategic approaches to leveraging corporate knowledge for competitive advantage, entrepreneurship, and detailed case studies on both successful and failed business innovations.

  • Global Perspectives & Cross-cultural Insights: Investigates how knowledge and innovation are influenced by different cultures, the impact of global collaborations, and socio-political aspects in a globalized context.

  • Interdisciplinary Frontiers: Encourages research at the intersection of various fields, including neuroscience, design thinking, humanities, arts, and culture, and their collective contribution to the future of knowledge and innovation.

  • Sustainability, Ethics, and Future Directions: Addresses solutions to global challenges, ethical considerations in knowledge and innovation, and prospective visions for the future landscape of these fields.

  • Policy and Governance in Knowledge and Innovation: Analyzes how policies and governance models affect knowledge creation and innovation at various levels, from local to global.

  • Education and Learning Paradigms: Explores evolving trends in education and learning methods that contribute to knowledge creation and innovation, including lifelong learning and informal education.

  • Social Innovation and Community Engagement: Studies the role of social innovation in addressing societal issues and the importance of community engagement in knowledge dissemination and innovation.

  • Knowledge Economy and Intellectual Property: Examines the dynamics of the knowledge-based economy and the role of intellectual property rights in fostering or hindering innovation.

  • Human Resource Development and Innovation Culture: Investigates the strategies for developing human resources in organizations to create a culture of innovation.

  • Emerging Technologies and Future Workspaces: Looks into how emerging technologies are shaping future work environments and their impact on knowledge work and innovation.

Articles
Recent Articles
Most Downloaded
Most Cited

Abstract

Full Text|PDF|XML

This research examines customer relationship management (CRM) systems using multi-criteria decision-making (MCDM) methods, with the intention of selecting the most suitable solution for small companies. The main goal of this research is to make a decision when choosing a CRM system by applying an objective approach. For this purpose, objective criteria were used, and an objective evaluation of the observed CRM systems was conducted. By using the MEREC (MEthod based on the Removal Effects of Criteria) method, the importance of the criteria was determined, while the CORASO (COmpromise Ranking from Alternative SOlutions) method was applied to rank the CRM systems. These methods were combined using a methodology into a hybrid approach. The results of this approach indicate that CRM systems with a higher degree of integration and automation achieved a higher rank, while systems with limited functionalities and longer implementation times received a lower ranking. This analysis confirms the importance of CRM systems in optimizing business processes, improving customer satisfaction, and enhancing marketing activities in companies. The results of the research can assist small companies in making decisions when selecting a CRM system. The contribution of this research is to provide efficient decision-making in the selection of a CRM system, thereby strengthening the companies' operations and improving their performance.

Abstract

Full Text|PDF|XML

In recent years, e-commerce has emerged as a dominant sales channel, with an increasing number of large-scale companies exclusively operating online. The substantial growth of e-commerce has been paralleled by the growing importance of efficient logistics, as the flow of goods in international trade demands sophisticated planning and execution. Following the purchase stage, logistics plays a pivotal role in ensuring timely delivery to end customers, with final distribution being one of the most critical aspects. The optimization of the distribution process is particularly challenging due to the complexities involved in the selection of transport modes, optimal routing, and the appropriate types of vehicles. This study investigates the parcel distribution process in the Serbian logistics sector, providing a comprehensive analysis of e-commerce flows during the initial stages of goods movement. A decision-making model based on the Stepwise Weight Assessment Ratio Analysis (SWARA) and Weighted Aggregated Sum Product Assessment (WASPAS) methods is proposed to optimize vehicle selection for parcel distribution. The model evaluates ten vehicle alternatives across nine distinct criteria: delivery volume ($\mathrm{C}_1$), average number of parcels per delivery ($\mathrm{C}_2$), vehicle fleet size ($\mathrm{C}_3$), payload capacity ($\mathrm{C}_4$), number of customer complaints ($\mathrm{C}_5$), cargo volume ($\mathrm{C}_6$), incidence of damaged shipments ($\mathrm{C}_7$), loss of shipments ($\mathrm{C}_8$), and vehicle height limitations ($\mathrm{C}_9$). Sensitivity analysis is conducted to test the robustness and stability of the proposed model, ensuring that the selected vehicle configurations are resilient under varying operational conditions. The findings contribute to the broader understanding of logistics optimization in e-commerce, offering insights into the effective selection of transport vehicles that can enhance the efficiency and reliability of the final distribution phase.

Abstract

Full Text|PDF|XML
Urban competitiveness is an essential determinant of the long-term sustainability and economic development of cities, influencing not only local prosperity but also national growth. The accurate measurement of urban competitiveness is critical for policymakers, as it provides insights into the strengths and weaknesses of cities, informing strategic development. This study evaluates the competitiveness of 17 European cities through an integrated Multi-Criteria Decision-Making (MCDM) framework, combining the Logarithmic Percentage Change-driven Objective Weighting (LOPCOW) method for criteria weighting with the Ranking of Alternatives with Weights of Criterion (RAWEC) method for city ranking. The dataset utilised in this analysis was derived from the 2024 Global Power City Index (GPCI), a comprehensive report assessing various urban performance dimensions. The LOPCOW methodology revealed that the livability (L) criterion holds the highest weight in determining urban competitiveness, whereas research and development (R&D) emerged as the least influential factor. Using the RAWEC method, cities were ranked based on their overall competitiveness, with London identified as the most competitive urban centre, while Istanbul was ranked lowest. The findings highlight the importance of livability in enhancing urban competitiveness and suggest that cities should prioritise improvements in R&D to foster more balanced and sustainable competitiveness. This research contributes to the growing body of literature on urban performance measurement, offering a novel methodological approach that integrates both objective weighting and ranking techniques, which can be applied to further studies on global urban competitiveness.

Abstract

Full Text|PDF|XML
This study examines the role of Open Innovation (OI) in facilitating the adoption of Industry 4.0 (I4.0) technologies by small manufacturing enterprises in the non-energy sector of Caribbean Small Island Developing States (SIDS). These firms encounter significant challenges, including limited resources, inadequate infrastructure, and underdeveloped innovation ecosystems, which necessitate the adoption of tailored OI practices. A comprehensive literature review was conducted to identify the key enablers of OI, which led to the development of a conceptual framework. Insights gained from structured interviews with industry experts were used to assess the influence of these enablers on I4.0 adoption. Pairwise comparisons were employed to explore the interrelationships among these factors, culminating in the construction of a reachability matrix and a hierarchical model through Interpretive Structural Modelling (ISM) to analyse the dependencies and causal relationships among them. The study identified “Competitive Pressure,” “Customer Pressure,” and “Managerial Dynamic Capabilities” as the primary enablers driving OI and influencing the adoption of I4.0 technologies. Intermediate factors, such as “Digital Trust,” “R&D Investment Capabilities,” and “Collaborative Networks,” were found to mediate the relationship between the primary enablers and the outcome of “Adaptation to Global Best Practices.” Despite the fact that OI practices are often driven by external pressures, the adoption of I4.0 technologies was found to be strongly supported by managerial dynamic capabilities, highlighting the importance of both push and pull factors. The adaptation to global best practices is significantly shaped by managerial capabilities, competitive pressures, and customer demands. Furthermore, environmental scanning was identified as an essential tool for aligning managerial dynamic capabilities with market conditions, facilitating agile decision-making for technology adoption through collaboration. Strategic interventions to support intermediary factors are crucial for small firms to navigate external pressures, sustain innovation, and build internal capabilities for I4.0. The findings contribute to the development of a networked ecosystem framework, which offers a pathway to strengthening stakeholder alliances, implementing customer-centric open OI practices, and enhancing management effectiveness. It is concluded that the successful adoption of I4.0 technologies is achievable through strategic, managerial, and policy-driven frameworks that align with global standards and address competitive and customization demands.
Open Access
Research article
Development and Evaluation of a Parallel K-means Algorithm for Big Data Analysis in Google MapReduce Environment
junwei zhao ,
xuexu yuan ,
qingtao hou ,
hanyu gao ,
chunyu gao ,
yuanyuan zhang
|
Available online: 08-22-2024

Abstract

Full Text|PDF|XML
The challenge of executing iterative big data analysis algorithms within the Google Cloud MapReduce environment has been addressed by developing a parallel K-means algorithm capable of leveraging the distributed computing power of the platform. Traditional K-means, which requires iterative steps, is adapted into a parallel version using MapReduce to enhance computational efficiency. This parallel algorithm is structured into multiple super-steps, each of which executes in parallel but is processed sequentially across super-steps. Each super-step corresponds to one iteration of the serial K-means algorithm, with parallel computation carried out at each node to determine the mean of each cluster center. Experimental evaluations have demonstrated that the parallel K-means algorithm performs effectively and accurately. Notably, for a dataset of 450 water samples, a parallel speedup factor of 20.8 was achieved, significantly reducing the time required for data analysis. This substantial reduction in processing time is critical in time-sensitive applications, such as coal mine rescue operations, where quick decision-making is essential. The results indicate that the proposed parallel K-means algorithm is both a feasible and efficient solution for handling large-scale datasets within cloud environments, providing substantial benefits in both computational speed and practical application.

Abstract

Full Text|PDF|XML

Digital ink Chinese character recognition (DICCR) systems have predominantly been developed using datasets composed of native language writers. However, the handwriting of foreign students, who possess distinct writing habits and often make errors or deviations from standard forms, poses a unique challenge to recognition systems. To address this issue, a robust and adaptable approach is proposed, utilizing a residual network augmented with multi-scale dilated convolutions. The proposed architecture incorporates convolutional kernels of varying scales, which facilitate the extraction of contextual information from different receptive fields. Additionally, the use of dilated convolutions with varying dilation rates allows the model to capture long-range dependencies and short-range features concurrently. This strategy mitigates the gridding effect commonly associated with dilated convolutions, thereby enhancing feature extraction. Experiments conducted on a dataset of digital ink Chinese characters (DICCs) written by foreign students demonstrate the efficacy of the proposed method in improving recognition accuracy. The results indicate that the network is capable of more effectively handling the non-standard writing styles often encountered in such datasets. This approach offers significant potential for the error extraction and automatic evaluation of Chinese character writing, especially in the context of non-native learners.

Abstract

Full Text|PDF|XML
The accurate estimation of the age of orange trees is a critical task in orchard management, providing valuable insights into tree growth, yield prediction, and the implementation of optimal agricultural practices. Traditional methods, such as counting growth rings, while precise, are often labor-intensive and invasive, requiring tree cutting or core sampling. These techniques are impractical for large-scale application, as they are time-consuming and may cause damage to the trees. A novel non-invasive system based on fuzzy logic, combined with linear regression analysis, has been developed to estimate the age of orange trees using easily measurable parameters, including trunk diameter and height. The fuzzy inference system (FIS) offers an adaptive, intuitive, and accurate model for age estimation by incorporating these key variables. Furthermore, a multiple linear regression analysis was performed, revealing a statistically significant correlation between the predictor variables (trunk diameter and height) and tree age. The regression coefficients for diameter (p = 0.0134) and height (p = 0.0444) demonstrated strong relationships with tree age, and an R-squared value of 0.9800 indicated a high degree of model fit. These results validate the effectiveness of the proposed system, highlighting the potential of combining fuzzy logic and regression techniques to achieve precise and scalable age estimation. The model provides a valuable tool for orchard managers, agronomists, and environmental scientists, offering an efficient method for monitoring tree health, optimizing fruit production, and promoting sustainable agricultural practices.

Abstract

Full Text|PDF|XML
This study introduces novel algebraic techniques within the framework of complex Fermatean fuzzy sets (CFFSs) by incorporating confidence levels, presenting a suite of operators tailored for advanced decision-making. Specifically, the confidence complex Fermatean fuzzy weighted geometric (CCFFWG) operator, the confidence complex Fermatean fuzzy ordered weighted geometric (CCFFOWG) operator, and the confidence complex Fermatean fuzzy hybrid geometric (CCFFHG) operator are developed to address multi-attribute group decision-making (MCGDM) challenges. These methodologies are designed to enhance decision-making in scenarios where decision-makers provide asymmetric or imprecise information, often encountered in environmental and industrial contexts. To validate the applicability of the proposed approach, a practical case study involving the selection of an optimal fire extinguisher from several alternatives is conducted. The performance of the newly developed operators is benchmarked against established methods from prior studies, with results demonstrating superior decision outcomes in terms of precision and reliability. By embedding confidence levels into complex Fermatean fuzzy operations, the proposed techniques offer greater robustness in managing uncertainty and variability across multiple attributes. These findings suggest that the advanced algebraic framework contributes significantly to improving decision quality in complex group decision-making environments.

Abstract

Full Text|PDF|XML
Self-regulated learning (SRL) is conceptualized as a series of interrelated cognitive and affective processes rather than as isolated events. To elucidate the relationship between students' cognitive engagement and their comprehension of self-regulation strategies, a conceptual model was developed to examine learner engagement during a hypothetical learning scenario. The model posits that the learning environment can be represented as a social network in which the mechanisms of knowledge diffusion significantly influence a learner's adoption of self-regulatory processes. The results obtained from this model corroborate the modes of cognitive engagement as predicted by the Interactive, Constructive, Active, and Passive (ICAP) framework, manifesting as absorbing-state phase transitions. These transitions are interpreted as self-tuned phase changes associated with self-schema and personal adaptive and reflexive learning thresholds. This framework suggests that learners engage in retrospective monitoring processes that activate SRL mechanisms. It is inferred that learning occurs through continuous change; wherein self-regulated practices can be viewed as processes leading to specific events that subsequently trigger further learning. This conceptualization underscores the dynamic nature of SRL and highlights the potential for computer simulations to model and understand these processes.

Abstract

Full Text|PDF|XML

Multi-Criteria Decision-Making (MCDM) represents a critical area of research, particularly in artificial intelligence, through the modeling of real-world decision-making scenarios. Numerous methods have been developed to address the challenges of integrating non-quantitative, incomplete, and imprecise information under conditions of uncertainty. This paper presents the enhancement of the Defining Interrelationships Between Ranked Criteria II (DIBR II) method by incorporating interval grey numbers, in accordance with the principles of Grey theory, its arithmetic operations, and the DIBR II methodology. The enhancement includes the introduction of a conviction degree to reflect decision-makers' or experts' confidence in their assertions. The application of this enhanced method is demonstrated through an illustrative example, following the procedural steps. Additionally, its efficacy is validated in a real-world scenario involving the selection of Lean organization system management techniques, utilizing the Rough Multi-Attributive Border Approximation Area Comparison (Rough MABAC) method. The results indicate that the enhanced DIBR II method is effective in determining criteria weight coefficients, offering a more nuanced distribution compared to traditional crisp methods. Furthermore, when implemented in a multi-criteria model, it yields a more refined ranking of alternatives, contingent on the degree of confidence in the given claims.

Open Access
Research article
A Blockchain Cross-Chain Solution Based on Relays
wanshu fu ,
Jiaqi Du ,
yi zhang ,
ziqi wang
|
Available online: 04-14-2024

Abstract

Full Text|PDF|XML

Blockchain has attracted widespread attention due to its unique features such as decentralization, traceability, and tamper resistance. With the rapid development of blockchain technology, an increasing number of industries are gradually applying blockchain technology to various fields such as the Internet of Things, healthcare, finance, agriculture, and government affairs. However, there are certain differences in the underlying architecture, data structures, consensus algorithms, and other aspects of blockchain technology across different sectors, which restrict transactions to occur within a single blockchain. Achieving interoperability between different blockchains is challenging, hindering data exchange and collaborative business to some extent, inevitably leading to the problem of “data silo”. Against this backdrop, this study aims to explore a cross-chain solution based on relay technology to address the current challenges of interoperability between blockchain systems. By employing relay-based cross-chain technology, a blockchain cross-chain collaboration platform is established to simulate the construction of a real cross-chain network. By deploying business contracts, data and resources between heterogeneous blockchains can seamlessly communicate, resolving the challenge of cross-chain interoperability. The research findings demonstrate that the blockchain cross-chain solution based on relay technology can effectively enhance interoperability between different blockchain systems, enabling cross-chain asset circulation and information transmission, highlighting the practical applicability and scalability of this study.

Abstract

Full Text|PDF|XML
This study introduces logarithmic operations tailored to intuitionistic fuzzy sets (IFSs) aimed at mitigating uncertainty in decision-making processes. Through logarithmic transformations, the membership and non-membership degrees are effectively scaled, thereby enhancing interpretability and facilitating the assessment of uncertainty. Advanced logarithmic aggregation operators have been developed, specifically the Induced Confidence Logarithmic Intuitionistic Fuzzy Einstein Ordered Weighted Geometric Aggregation (ICLIFEOWGA) operator and the Induced Confidence Logarithmic Intuitionistic Fuzzy Einstein Hybrid Geometric Aggregation (ICLIFEHGA) operator. These operators serve as versatile tools, providing robust frameworks for integrating diverse information sources in decision-making and assessment processes. The versatility of the operators is demonstrated through their application across various industries and domains, where they support the integration of multiple criteria in complex decision-making scenarios. An algorithm for the decision-making process is presented, and the effectiveness and efficiency of the proposed techniques are illustrated through a case study on laptop selection.
load more...
- no more data -
- no more data -