Advancements in 3D printing technology have enabled the creation of highly efficient and cost-effective suppressors, offering significant safety benefits for firearm users. Exposure to firearm noise, even in controlled environments such as shooting ranges, poses serious health risks, necessitating improved noise reduction measures. This study explores the potential of 3D printing to produce novel suppressor designs that effectively reduce sound pressure levels in firearms, specifically focusing on their application with a .22 LR caliber rifle. Suppressors capable of reducing sound levels to below 135 dB, making them safe for adult use without hearing protection, were the primary focus. The research was conducted in two phases: initially, optimal suppressor designs were modeled using SolidWorks computational fluid dynamics (CFD), featuring innovations such as perforated baffles, additional expansion chambers, deep and curved expansion chambers, and perforated tubes extending along the suppressor's length. Following the simulation of these designs, live fire testing was conducted in a controlled shooting range environment. The results demonstrated that all tested designs effectively reduced sound pressure to safe levels. However, the suppressor with a conventional baffle layout supplemented by partitioned expansion chambers proved to be the most efficient, particularly when paired with subsonic ammunition. This study highlights the potential of 3D printing technology to revolutionize suppressor design, offering customizable solutions that enhance both user safety and environmental protection.