Foggy road conditions present substantial challenges to road monitoring and autonomous driving systems, as existing defogging techniques often fail to accurately recover structural details, manage dense fog, and mitigate artifacts. In response, a novel defogging model is proposed, incorporating Pythagorean fuzzy aggregation, Gaussian Mixture Models (GMM), and the level-set method, aimed at overcoming these limitations. Unlike conventional methods that depend on fixed priors or oversimplified haze models, the proposed framework leverages the advantages of Pythagorean fuzzy aggregation to enhance contrast and detail restoration, GMM to estimate fog density robustly, and the level-set method for precise edge preservation. The performance of the model is quantitatively assessed, revealing a Peak Signal-to-Noise Ratio (PSNR) of up to 37.1 dB and a Structural Similarity Index (SSIM) of 0.96, which significantly outperforms existing defogging techniques. Statistical analyses further confirm the robustness of the approach, with a p-value of less than 0.001 for key performance metrics. Additionally, the model demonstrates an execution time of 0.07 seconds, indicating its suitability for real-time road monitoring applications. Qualitative assessments highlight the model's ability to restore natural road colours and maintain high structural fidelity, even under conditions of dense fog. This work provides a promising advancement over current methods, with potential applications in autonomous driving, traffic surveillance, and smart transportation systems.