Javascript is required
Search
Volume 2, Issue 1, 2024

Abstract

Full Text|PDF|XML
The transition from traditional production activities to a manufacturing-dominated economy has been a hallmark of industrial evolution, culminating in the advent of the fourth industrial revolution. This phase is characterized by the seamless integration of digital advancements across all sectors of global industry, heralding significant strides in meeting the evolving demands of markets and consumers. The concept of the smart factory stands at the forefront of this transformation, embedding sustainability, which is defined as economic viability, environmental stewardship, and social responsibility, into its core principles. This research focuses on the critical role of autonomous material handling technologies within these smart manufacturing environments, emphasizing their contribution to enhancing industrial productivity. The automation of material handling, propelled by the exigencies of reducing material damage, minimizing human intervention in repetitive tasks, and mitigating errors and service delays, is increasingly viewed as indispensable for achieving sustainable industrial operations. The employment of artificial intelligence (AI) in material handling not only offers substantial benefits in terms of operational efficiency and sustainability but also introduces specific challenges that must be navigated to align with the smart factory paradigm. By examining the integration of autonomous material handling solutions, traditionally epitomized by the utilization of forklifts in industrial settings, this study delineates the essential benchmarks for their implementation, ensuring compatibility with the overarching objectives of smart manufacturing systems. Through this lens, the paper articulates the dual imperative of aligning material handling technologies with environmental and social sustainability criteria, while also ensuring their economic feasibility.

Abstract

Full Text|PDF|XML
To address the rate matching issue between high-bandwidth and high-sampling-rate analog-to-digital converters (ADCs) and low-bandwidth and low-sampling-rate baseband processors, the key technology of digital downconversion is introduced. This approach relocates the intermediate-frequency baseband signal to a vicinity of the baseband, laying a foundation for subsequent Digital Signal Processor (DSP) analysis and processing. In an innovative application of the Coordinate Rotation Digital Computer (CORDIC) algorithm for Numerically Controlled Oscillator (NCO) in a pipeline design, the phase differences of five parallel signals are measured, facilitating real-time parallel processing of the phase and amplitude relationships of multiple signals. The Field Programmable Gate Array (FPGA) design and implementation of the digital mixer module and filter bank for digital downconversion have been accomplished. A test board for the direction-finding application of five digital downconversion channels has been constructed, with the FMQL45T900 as its core. The correctness of the direction-finding data has been validated through practical application, demonstrating a significant improvement in power consumption compared to methods documented in other literature, thereby enhancing overall efficiency. The digital downconversion technology based on the CORDIC algorithm is applicable in various fields, including military communications, broadcasting, and radar navigation systems.

Abstract

Full Text|PDF|XML

In the realm of high-definition surveillance for dense traffic environments, the accurate detection and classification of vehicles remain paramount challenges, often hindered by missed detections and inaccuracies in vehicle type identification. Addressing these issues, an enhanced version of the You Only Look Once version v5s (YOLOv5s) algorithm is presented, wherein the conventional network structure is optimally modified through the partial integration of the Swin Transformer V2. This innovative approach leverages the convolutional neural networks' (CNNs) proficiency in local feature extraction alongside the Swin Transformer V2's capability in global representation capture, thereby creating a symbiotic system for improved vehicle detection. Furthermore, the introduction of the Similarity-based Attention Module (SimAM) within the CNN framework plays a pivotal role, dynamically refocusing the feature map to accentuate local features critical for accurate detection. An empirical evaluation of this augmented YOLOv5s algorithm demonstrates a significant uplift in performance metrics, evidencing an average detection precision (mAP@0.5:0.95) of 65.7%. Specifically, in the domain of vehicle category identification, a notable increase in the true positive rate by 4.48% is observed, alongside a reduction in the false negative rate by 4.11%. The culmination of these enhancements through the integration of Swin Transformer and SimAM within the YOLOv5s framework marks a substantial advancement in the precision of vehicle type recognition and reduction of target miss detection in densely populated traffic flows. The methodology's success underscores the efficacy of this integrated approach in overcoming the prevalent limitations of existing vehicle detection algorithms under complex surveillance scenarios.

Open Access
Research article
Intelligent Risk Analysis of Investment Projects in the Extractive Industry
abdullah m. al-ansi ,
askar garad ,
vladimir ryabtsev
|
Available online: 03-30-2024

Abstract

Full Text|PDF|XML
This study introduces an advanced technology for risk analysis in investment projects within the extractive industry, specifically focusing on innovative mining ventures. The research primarily investigates various determinants influencing project risks, including production efficiency, cost, informational content, resource potential, organizational structure, external environmental influences, and environmental impacts. In addressing the research challenge, system-cognitive models from the Eidos intellectual framework are employed. These models quantitatively reflect the informational content observed across different gradations of descriptive scales, predicting the transition of the modelled object into a state corresponding to specific class gradations. A comprehensive analysis of strengths, weaknesses, opportunities and threats (SWOT) has been conducted, unveiling the dynamic interplay of development factors against the backdrop of threats and opportunities within mineral deposits exploitation projects. This analysis facilitates the identification of critical problem areas, bottlenecks, prospects, and risks, considering environmental considerations. The application of this novel intelligent technology significantly streamlines the development process for mining investment projects, guiding the selection of ventures that promise enhanced production efficiency, cost reduction, and minimized environmental harm. The methodological approach adopted in this study aligns with the highest standards of academic rigour, ensuring consistency in the use of professional terminology throughout the article and adhering to the stylistic and structural norms prevalent in leading academic journals. By leveraging an intelligent, systematic framework for risk analysis, this research contributes valuable insights into optimizing investment decisions in the mining sector, emphasizing sustainability and economic viability.

Abstract

Full Text|PDF|XML

In the realm of Wireless Sensor Networks (WSNs), energy efficiency emerges as a paramount concern due to the inherent limitations in the energy capacity of sensor nodes. The extension of network lifespan is critically dependent on the strategic selection of Cluster Heads (CHs), a process that necessitates a nuanced approach to optimize communication, resource allocation, and network performance overall. This study proposes a novel methodology for CH selection, integrating Multiple Criteria Decision Making (MCDM) with the K-Means algorithm to facilitate a more discerning aggregation and forwarding of data to the network sink. Central to this approach is the application of the Einstein Weighted Averaging Aggregation (EWA) operator, which introduces a layer of sophistication in handling the uncertainties inherent in WSN deployments. The efficiency of CH selection is vital, as CHs serve as pivotal nodes within the network, their selection and operational efficiency directly influencing the network's energy consumption and data processing capabilities. By employing a meticulously designed clustering process via the K-Means algorithm and selecting CHs based on a comprehensive set of parameters, including, but not limited to, residual energy and node proximity, this methodology seeks to substantially enhance the energy efficiency of WSNs. Comparative analysis with the Low-Energy Adaptive Cluster Hierarchy (LEACH)-Fuzzy Clustering (FC) algorithm underscores the efficacy of the proposed approach, demonstrating a 15% improvement in network lifespan. This advancement not only ensures optimal utilization of limited resources but also promotes the sustainability of WSN deployments, a critical consideration for the widespread application of these networks in various fields. The findings of this study underscore the significance of adopting sophisticated, algorithmically driven strategies for CH selection, highlighting the potential for significant enhancements in WSN longevity through methodical, data-informed decision-making processes.

- no more data -