Javascript is required
Search
Volume 3, Issue 1, 2025

Abstract

Full Text|PDF|XML

Pre-stressed concrete continuous box girder bridges are widely used in bridge engineering due to their excellent mechanical properties. However, as the service life of the bridge increases and heavy vehicles exert additional loads, cracks may develop in the structure, leading to pre-stress loss and affecting its safety. This paper focuses on the reinforcement of an actual bridge and determines the pre-reinforcement stress state and stiffness degradation through load testing. The test results are combined with numerical simulations to analyze the stiffness of the box girder section. When the section stiffness is reduced by 5%, the deflection at the mid-span control section of the box girder is 11.7 mm, which is in good agreement with the actual condition. By integrating the bridge's appearance inspection results with numerical simulations, pre-stress loss in the box girder is analyzed. When the pre-stress loss reaches 10%, transverse cracks appear at the bottom of the main girder, similar to the results of field inspections. Based on this, the analysis considers a 5% stiffness reduction and a 10% pre-stress loss to evaluate the box girder.

- no more data -