Javascript is required
Search
Volume 2, Issue 3, 2024

Abstract

Full Text|PDF|XML
The accurate estimation of the age of orange trees is a critical task in orchard management, providing valuable insights into tree growth, yield prediction, and the implementation of optimal agricultural practices. Traditional methods, such as counting growth rings, while precise, are often labor-intensive and invasive, requiring tree cutting or core sampling. These techniques are impractical for large-scale application, as they are time-consuming and may cause damage to the trees. A novel non-invasive system based on fuzzy logic, combined with linear regression analysis, has been developed to estimate the age of orange trees using easily measurable parameters, including trunk diameter and height. The fuzzy inference system (FIS) offers an adaptive, intuitive, and accurate model for age estimation by incorporating these key variables. Furthermore, a multiple linear regression analysis was performed, revealing a statistically significant correlation between the predictor variables (trunk diameter and height) and tree age. The regression coefficients for diameter (p = 0.0134) and height (p = 0.0444) demonstrated strong relationships with tree age, and an R-squared value of 0.9800 indicated a high degree of model fit. These results validate the effectiveness of the proposed system, highlighting the potential of combining fuzzy logic and regression techniques to achieve precise and scalable age estimation. The model provides a valuable tool for orchard managers, agronomists, and environmental scientists, offering an efficient method for monitoring tree health, optimizing fruit production, and promoting sustainable agricultural practices.

Abstract

Full Text|PDF|XML

Digital ink Chinese character recognition (DICCR) systems have predominantly been developed using datasets composed of native language writers. However, the handwriting of foreign students, who possess distinct writing habits and often make errors or deviations from standard forms, poses a unique challenge to recognition systems. To address this issue, a robust and adaptable approach is proposed, utilizing a residual network augmented with multi-scale dilated convolutions. The proposed architecture incorporates convolutional kernels of varying scales, which facilitate the extraction of contextual information from different receptive fields. Additionally, the use of dilated convolutions with varying dilation rates allows the model to capture long-range dependencies and short-range features concurrently. This strategy mitigates the gridding effect commonly associated with dilated convolutions, thereby enhancing feature extraction. Experiments conducted on a dataset of digital ink Chinese characters (DICCs) written by foreign students demonstrate the efficacy of the proposed method in improving recognition accuracy. The results indicate that the network is capable of more effectively handling the non-standard writing styles often encountered in such datasets. This approach offers significant potential for the error extraction and automatic evaluation of Chinese character writing, especially in the context of non-native learners.

Open Access
Research article
Development and Evaluation of a Parallel K-means Algorithm for Big Data Analysis in Google MapReduce Environment
junwei zhao ,
xuexu yuan ,
qingtao hou ,
hanyu gao ,
chunyu gao ,
yuanyuan zhang
|
Available online: 08-22-2024

Abstract

Full Text|PDF|XML
The challenge of executing iterative big data analysis algorithms within the Google Cloud MapReduce environment has been addressed by developing a parallel K-means algorithm capable of leveraging the distributed computing power of the platform. Traditional K-means, which requires iterative steps, is adapted into a parallel version using MapReduce to enhance computational efficiency. This parallel algorithm is structured into multiple super-steps, each of which executes in parallel but is processed sequentially across super-steps. Each super-step corresponds to one iteration of the serial K-means algorithm, with parallel computation carried out at each node to determine the mean of each cluster center. Experimental evaluations have demonstrated that the parallel K-means algorithm performs effectively and accurately. Notably, for a dataset of 450 water samples, a parallel speedup factor of 20.8 was achieved, significantly reducing the time required for data analysis. This substantial reduction in processing time is critical in time-sensitive applications, such as coal mine rescue operations, where quick decision-making is essential. The results indicate that the proposed parallel K-means algorithm is both a feasible and efficient solution for handling large-scale datasets within cloud environments, providing substantial benefits in both computational speed and practical application.

Abstract

Full Text|PDF|XML
This study examines the role of Open Innovation (OI) in facilitating the adoption of Industry 4.0 (I4.0) technologies by small manufacturing enterprises in the non-energy sector of Caribbean Small Island Developing States (SIDS). These firms encounter significant challenges, including limited resources, inadequate infrastructure, and underdeveloped innovation ecosystems, which necessitate the adoption of tailored OI practices. A comprehensive literature review was conducted to identify the key enablers of OI, which led to the development of a conceptual framework. Insights gained from structured interviews with industry experts were used to assess the influence of these enablers on I4.0 adoption. Pairwise comparisons were employed to explore the interrelationships among these factors, culminating in the construction of a reachability matrix and a hierarchical model through Interpretive Structural Modelling (ISM) to analyse the dependencies and causal relationships among them. The study identified “Competitive Pressure,” “Customer Pressure,” and “Managerial Dynamic Capabilities” as the primary enablers driving OI and influencing the adoption of I4.0 technologies. Intermediate factors, such as “Digital Trust,” “R&D Investment Capabilities,” and “Collaborative Networks,” were found to mediate the relationship between the primary enablers and the outcome of “Adaptation to Global Best Practices.” Despite the fact that OI practices are often driven by external pressures, the adoption of I4.0 technologies was found to be strongly supported by managerial dynamic capabilities, highlighting the importance of both push and pull factors. The adaptation to global best practices is significantly shaped by managerial capabilities, competitive pressures, and customer demands. Furthermore, environmental scanning was identified as an essential tool for aligning managerial dynamic capabilities with market conditions, facilitating agile decision-making for technology adoption through collaboration. Strategic interventions to support intermediary factors are crucial for small firms to navigate external pressures, sustain innovation, and build internal capabilities for I4.0. The findings contribute to the development of a networked ecosystem framework, which offers a pathway to strengthening stakeholder alliances, implementing customer-centric open OI practices, and enhancing management effectiveness. It is concluded that the successful adoption of I4.0 technologies is achievable through strategic, managerial, and policy-driven frameworks that align with global standards and address competitive and customization demands.

Abstract

Full Text|PDF|XML
Urban competitiveness is an essential determinant of the long-term sustainability and economic development of cities, influencing not only local prosperity but also national growth. The accurate measurement of urban competitiveness is critical for policymakers, as it provides insights into the strengths and weaknesses of cities, informing strategic development. This study evaluates the competitiveness of 17 European cities through an integrated Multi-Criteria Decision-Making (MCDM) framework, combining the Logarithmic Percentage Change-driven Objective Weighting (LOPCOW) method for criteria weighting with the Ranking of Alternatives with Weights of Criterion (RAWEC) method for city ranking. The dataset utilised in this analysis was derived from the 2024 Global Power City Index (GPCI), a comprehensive report assessing various urban performance dimensions. The LOPCOW methodology revealed that the livability (L) criterion holds the highest weight in determining urban competitiveness, whereas research and development (R&D) emerged as the least influential factor. Using the RAWEC method, cities were ranked based on their overall competitiveness, with London identified as the most competitive urban centre, while Istanbul was ranked lowest. The findings highlight the importance of livability in enhancing urban competitiveness and suggest that cities should prioritise improvements in R&D to foster more balanced and sustainable competitiveness. This research contributes to the growing body of literature on urban performance measurement, offering a novel methodological approach that integrates both objective weighting and ranking techniques, which can be applied to further studies on global urban competitiveness.
- no more data -