Javascript is required
Search
Volume 2, Issue 2, 2024

Abstract

Full Text|PDF|XML
This study introduces logarithmic operations tailored to intuitionistic fuzzy sets (IFSs) aimed at mitigating uncertainty in decision-making processes. Through logarithmic transformations, the membership and non-membership degrees are effectively scaled, thereby enhancing interpretability and facilitating the assessment of uncertainty. Advanced logarithmic aggregation operators have been developed, specifically the Induced Confidence Logarithmic Intuitionistic Fuzzy Einstein Ordered Weighted Geometric Aggregation (ICLIFEOWGA) operator and the Induced Confidence Logarithmic Intuitionistic Fuzzy Einstein Hybrid Geometric Aggregation (ICLIFEHGA) operator. These operators serve as versatile tools, providing robust frameworks for integrating diverse information sources in decision-making and assessment processes. The versatility of the operators is demonstrated through their application across various industries and domains, where they support the integration of multiple criteria in complex decision-making scenarios. An algorithm for the decision-making process is presented, and the effectiveness and efficiency of the proposed techniques are illustrated through a case study on laptop selection.
Open Access
Research article
A Blockchain Cross-Chain Solution Based on Relays
wanshu fu ,
Jiaqi Du ,
yi zhang ,
ziqi wang
|
Available online: 04-14-2024

Abstract

Full Text|PDF|XML

Blockchain has attracted widespread attention due to its unique features such as decentralization, traceability, and tamper resistance. With the rapid development of blockchain technology, an increasing number of industries are gradually applying blockchain technology to various fields such as the Internet of Things, healthcare, finance, agriculture, and government affairs. However, there are certain differences in the underlying architecture, data structures, consensus algorithms, and other aspects of blockchain technology across different sectors, which restrict transactions to occur within a single blockchain. Achieving interoperability between different blockchains is challenging, hindering data exchange and collaborative business to some extent, inevitably leading to the problem of “data silo”. Against this backdrop, this study aims to explore a cross-chain solution based on relay technology to address the current challenges of interoperability between blockchain systems. By employing relay-based cross-chain technology, a blockchain cross-chain collaboration platform is established to simulate the construction of a real cross-chain network. By deploying business contracts, data and resources between heterogeneous blockchains can seamlessly communicate, resolving the challenge of cross-chain interoperability. The research findings demonstrate that the blockchain cross-chain solution based on relay technology can effectively enhance interoperability between different blockchain systems, enabling cross-chain asset circulation and information transmission, highlighting the practical applicability and scalability of this study.

Abstract

Full Text|PDF|XML

Multi-Criteria Decision-Making (MCDM) represents a critical area of research, particularly in artificial intelligence, through the modeling of real-world decision-making scenarios. Numerous methods have been developed to address the challenges of integrating non-quantitative, incomplete, and imprecise information under conditions of uncertainty. This paper presents the enhancement of the Defining Interrelationships Between Ranked Criteria II (DIBR II) method by incorporating interval grey numbers, in accordance with the principles of Grey theory, its arithmetic operations, and the DIBR II methodology. The enhancement includes the introduction of a conviction degree to reflect decision-makers' or experts' confidence in their assertions. The application of this enhanced method is demonstrated through an illustrative example, following the procedural steps. Additionally, its efficacy is validated in a real-world scenario involving the selection of Lean organization system management techniques, utilizing the Rough Multi-Attributive Border Approximation Area Comparison (Rough MABAC) method. The results indicate that the enhanced DIBR II method is effective in determining criteria weight coefficients, offering a more nuanced distribution compared to traditional crisp methods. Furthermore, when implemented in a multi-criteria model, it yields a more refined ranking of alternatives, contingent on the degree of confidence in the given claims.

Abstract

Full Text|PDF|XML
Self-regulated learning (SRL) is conceptualized as a series of interrelated cognitive and affective processes rather than as isolated events. To elucidate the relationship between students' cognitive engagement and their comprehension of self-regulation strategies, a conceptual model was developed to examine learner engagement during a hypothetical learning scenario. The model posits that the learning environment can be represented as a social network in which the mechanisms of knowledge diffusion significantly influence a learner's adoption of self-regulatory processes. The results obtained from this model corroborate the modes of cognitive engagement as predicted by the Interactive, Constructive, Active, and Passive (ICAP) framework, manifesting as absorbing-state phase transitions. These transitions are interpreted as self-tuned phase changes associated with self-schema and personal adaptive and reflexive learning thresholds. This framework suggests that learners engage in retrospective monitoring processes that activate SRL mechanisms. It is inferred that learning occurs through continuous change; wherein self-regulated practices can be viewed as processes leading to specific events that subsequently trigger further learning. This conceptualization underscores the dynamic nature of SRL and highlights the potential for computer simulations to model and understand these processes.

Abstract

Full Text|PDF|XML
This study introduces novel algebraic techniques within the framework of complex Fermatean fuzzy sets (CFFSs) by incorporating confidence levels, presenting a suite of operators tailored for advanced decision-making. Specifically, the confidence complex Fermatean fuzzy weighted geometric (CCFFWG) operator, the confidence complex Fermatean fuzzy ordered weighted geometric (CCFFOWG) operator, and the confidence complex Fermatean fuzzy hybrid geometric (CCFFHG) operator are developed to address multi-attribute group decision-making (MCGDM) challenges. These methodologies are designed to enhance decision-making in scenarios where decision-makers provide asymmetric or imprecise information, often encountered in environmental and industrial contexts. To validate the applicability of the proposed approach, a practical case study involving the selection of an optimal fire extinguisher from several alternatives is conducted. The performance of the newly developed operators is benchmarked against established methods from prior studies, with results demonstrating superior decision outcomes in terms of precision and reliability. By embedding confidence levels into complex Fermatean fuzzy operations, the proposed techniques offer greater robustness in managing uncertainty and variability across multiple attributes. These findings suggest that the advanced algebraic framework contributes significantly to improving decision quality in complex group decision-making environments.
- no more data -