Javascript is required
Search
Volume 3, Issue 1, 2024

Abstract

Full Text|PDF|XML

Meteorological parameter modeling is imperative for predicting future atmospheric conditions. This study focuses on the Sub-Saharan region of West Africa, a region characterized by its climatic diversity and unique weather patterns, making it an ideal subject for meteorological research. The objective was to model meteorological parameters using trigonometric and polynomial functions, assessing their predictive accuracy in selected West African stations. The parameters considered include air temperature, air pressure, wind speed, rainfall, and relative humidity, with data sourced from the HelioClim satellite archive, spanning 1980 to 2022. The data, recorded in comma-separated value (CSV) format, were analyzed using descriptive statistics, specifically mean and standard deviation. Each meteorological parameter underwent modeling through both polynomial and trigonometric functions. The comparative effectiveness of these models was evaluated using the adjusted coefficient of determination and Root Mean Square Error (RMSE). The preference for the adjusted coefficient of determination over the standard coefficient of determination (R2) was due to its ability to account for biases arising from variances in the number of parameters in both model types. The results indicated that both trigonometric and polynomial models are robust in their predictive capabilities, demonstrating their utility in accurate parameter estimation and future weather prediction. These findings suggest that such models are valuable tools in climate studies, enhancing understanding and awareness of weather conditions in the Sub-Saharan West African region.

Open Access
Research article
Enhanced Oil Recovery Through Balanced Production Techniques in Horizontal Wells of Bohai A Oilfield
dedong xue ,
chunfeng zheng ,
zimo liu ,
jiayao peng ,
qiong shen
|
Available online: 02-02-2024

Abstract

Full Text|PDF|XML

In response to the prevalent high water cut challenge in horizontal wells of the Bohai A Oilfield, this study introduces an innovative approach for pinpointing water production points in horizontal wells. The methodology leverages a comprehensive evaluation that integrates techniques such as curve identification, dynamic analysis, numerical simulation, and seepage model calculations. In conjunction, a novel hydraulic control-based balanced oil production process has been developed. This process utilizes a specialized water plugging string to effectively seal water production points in horizontal wells. Additionally, a hydraulic control system for horizontal well oil production has been implemented, facilitating staged extraction and thus achieving balance in oil production. Field application, particularly in Well X1, demonstrates a marked improvement post-implementation: the comprehensive water cut in Well X1 decreased from an initial 98.1% to 87.3%, and the production pressure differential escalated from 0.55 MPa to 2.01 MPa. This substantial enhancement in reservoir utilization indicates a notable reduction in water cut within the crude oil. The application of this balanced production technology in horizontal wells has led to a decrease in water cut and liquid production, significantly alleviating surface processing pressures. Consequently, there has been an improvement in well productivity and the overall development effectiveness of the oilfield. These findings suggest that the balanced oil production technique offers a promising solution for enhancing oil recovery in horizontal wells, particularly in fields grappling with high water cuts.

Open Access
Research article
Optimizing Borehole Diameter for Maximum Gas Extraction Efficiency in Coal Seams
junming zhang ,
lei tan ,
xuan zhang ,
hai wu ,
zhen hu ,
haohua chen
|
Available online: 03-10-2024

Abstract

Full Text|PDF|XML

In mines characterized by high gas concentrations, the process of extracting natural resources frequently precipitates coal and gas outbursts, positioning borehole gas extraction as a pivotal preventative strategy. Investigations aimed at identifying an optimal borehole diameter for gas extraction were undertaken within the Puxi Mine, entailing the drilling of boreholes across a spectrum of diameters and subsequent comparative analysis of the resultant data. This study meticulously evaluated the influence of seven distinct borehole diameters on gas concentration and pure flow rate, per unit length of coal hole and per unit of applied negative pressure. It was discerned that boreholes with larger diameters significantly enhance gas extraction efficacy. Specifically, boreholes of 113mm and 94mm diameters were noted for their exceptional performance, delivering pure flow rates of gas at 0.0215 m3/min and 0.0428 m3/min, respectively. Through a detailed examination of borehole diameters that presented considerable advantages, notably 113mm, 105mm, and 94mm, it was ascertained that the 94mm borehole diameter achieved the highest utilization efficiency, registering a gas pure flow rate of 1.62×10-4 m3/min per unit diameter. Consequently, this diameter was identified as the most advantageous for gas extraction purposes. The insights garnered from this investigation are instrumental for the selection of borehole diameters tailored to gas extraction in coal seams of varying thicknesses, and they significantly contribute to the formulation of rationalized gas extraction methodologies.

Abstract

Full Text|PDF|XML

A geoelectrical imaging survey, employing resistivity and induced polarization (IP) methodologies, was executed on Dala Hill, Kano, Nigeria, positioned between latitudes 12.008611°N and 12.009722°N, and longitudes 8.505833°E and 8.507222°E. The objective was to assess and compare findings with prior ground magnetic studies to delineate subsurface geological structures. The survey utilized an ABEM Terrameter SAS 1000 for data acquisition along three distinct profiles encompassing the hill and adjacent areas, with electrode separations fixed at 10 meters. Data processing was conducted using RES2DINV software, revealing resistivity profiles that identified three stratified layers with resistivity values ranging from 300Ωm to 6798Ωm for the first layer, 128Ωm to 744Ωm for the second, and 4Ωm to 127Ωm for the third. IP profiles identified zones of varying chargeability, from -3.44 msec to 19.6 msec. Analysis indicated a consistent positive correlation between zones of high resistivity and low chargeability. For instance, a zone along Profile 1 demonstrated high resistivity values (2142Ωm - 6798Ωm) between 60m and 190m, coinciding with a low chargeability zone (0.506 msec to 2.43 msec) observed from 20m to 100m along the profile, equating to depths of 10m to 39.6m. Similar correlations were observed in the subsequent profiles, with significant intersections between high resistivity and low chargeability zones. These areas were interpreted as being rich in iron ore minerals, predominantly magnetite, based on the comparative analysis with standard values of rocks and minerals. The presence of magnetite, known for its high iron content and magnetic properties, underscores the area's potential for steel production. Moreover, the identification of a dyke within the study area corroborates findings from earlier magnetic studies, further validating the geophysical methodology's effectiveness in revealing the shallow subsurface structural settings. This alignment not only substantiates the layered configurations deduced from magnetic studies but also highlights the geoelectrical survey's capability in providing a comprehensive understanding of subsurface geology.

Abstract

Full Text|PDF|XML

Over a thirty-year period (1990-2020), the spatiotemporal changes in riverbank erosion and accretion along the Jamuna River in Shariakandi Upazila, Bogura District, Bangladesh, were investigated using Landsat satellite imagery processed through ArcGIS 10.8 and Erdas Imagine 2015. The analysis delineated significant alterations in the riverbank, quantifying a decrease in the river area from 108 km2 to 79.99 km2, with a net erosion of 50.02 km2 and an accretion of 78.03 km2. Among the nine unions affected, Karnibari, Kazla, and Chaulabari were most impacted, with erosion accounting for 14.79%, 25.98%, and 28.42% of the total, respectively. This study established a direct correlation between riverbank erosion and increased vulnerability for local populations, characterized by loss of homesteads and agricultural lands, displacement, income reduction, and a cycle of poverty. Environmental repercussions included deteriorated water quality and an increased prevalence of diseases. The effectiveness of various local adaptation strategies, such as financial reliance on external sources, migration, and occupational shifts, was also assessed, revealing a spectrum of success and underscoring the necessity for more sustainable, holistic approaches. This research emphasizes the imperative for integrated riverbank management strategies that concurrently address the geological and socio-economic ramifications of riverbank erosion.

- no more data -