In the pursuit of advancing multi-attribute group decision-making (MAGDM) methodologies, this study introduces two novel aggregation operators: the Induced Confidence Complex Pythagorean Fuzzy Ordered Weighted Geometric Aggregation (ICCPyFOWGA) operator and the Induced Confidence Complex Pythagorean Fuzzy Hybrid Geometric Aggregation (ICCPyFHGA) operator. These operators are characterized by their capacity to integrate various decision criteria based on complex Pythagorean fuzzy sets (CPyFSs), with an emphasis on the influence of confidence levels. Key structural properties of these operators, such as idempotency, boundedness, and monotonicity, are rigorously established. Furthermore, the practical applicability of these models in real-world decision-making scenarios is demonstrated through a descriptive example that underscores their efficiency and effectiveness. The analytical results affirm that the proposed operators not only enhance decision-making precision but also offer a flexible framework for addressing diverse decision-making environments. This contribution marks a significant advancement in the field of decision science, providing a robust tool for experts and practitioners involved in complex decision-making processes.
In this study, an extensive examination of topological parameters derived from molecular structures is conducted, with a specific focus on the Randic index, Geometric Arithmetic (GA) index, and Atom Bond Connectivity (ABC) index. These indices are applied to concealed non-Kekulean benzenoids and subdivided networks within line graphs. The investigation reveals patterns and relationships that were previously unexplored, shedding light on the structural intricacies of chemical compounds. The utility of graph theory as an effective tool for modeling and designing interconnection devices within the realm of chemical research is underscored. Such an approach not only advances the field of mathematical chemistry but also enriches understanding of the manipulation of chemical structures for extensive scientific applications. This analysis contributes to the body of knowledge by highlighting the relevance of these indices in unveiling complex molecular topologies and their potential implications for theoretical and applied chemistry.
This investigation was conducted to assess the impact of effort, interest, and cognitive competence on statistics achievement, mediated by self-concept among students. The study engaged 453 students enrolled in a statistics course at Yarmouk University, Jordan, who completed a self-report questionnaire. Path analysis facilitated the examination of both direct and indirect influences exerted by effort, interest, and cognitive competence on statistics achievement, with self-concept serving as a mediator. It was found that effort, interest, and cognitive competence significantly directly affected statistics achievement. Furthermore, self-concept was observed to partially mediate the relationships between each of effort, interest, cognitive competence, and statistics achievement. These results underscore the critical roles of effort, interest, and cognitive competence as predictors of success in statistics. The partial mediation by self-concept suggests its important but not exclusive role in enhancing academic outcomes. This study contributes to educational strategies by highlighting the potential of interventions focused on self-concept enhancement to improve academic performance in statistical education. Implications for educators and policy-makers are discussed in terms of designing effective educational interventions.
Food inflation presents a significant challenge in Nigeria. This study examines the volatility of four primary food items—tomatoes, yam, yellow garri, and imported rice—in Cross River State, Nigeria, utilizing data on monthly retail prices per kilogram from January 1997 to November 2023, sourced from the National Bureau of Statistics (NBS). Three asymmetric volatility models were employed: Exponential Generalized Autoregressive Conditional Heteroscedasticity (EGARCH), Threshold Autoregressive Conditional Heteroscedasticity (TARCH), and Power Autoregressive Conditional Heteroscedasticity (PARCH). The parameters of these models were estimated using three distributions of error innovations: Normal, Student's t-distribution, and Generalized Error Distribution (GED). The performance of the models was assessed based on log-likelihood for fitness and Root Mean Square Error (RMSE) for forecasting accuracy. The results indicated that non-Gaussian error innovations outperformed the normal distribution. Notably, higher persistence in volatility was observed for yam and tomatoes compared to yellow garri and imported rice. Tomatoes exhibited the highest volatility persistence among the food items analyzed. Significant Generalized Autoregressive Conditional Heteroscedasticity (GARCH) terms for tomatoes and yam suggested that past volatility has a significant positive impact on their current volatility, whereas this effect was not significant for yellow garri and imported rice (p$<$0.05). The leverage effect was found to be insignificant, indicating that positive and negative shocks in volatility exert similar effects on the volatility of these food items. These findings underscore the urgent need for incentives and adequate security measures to ensure food sufficiency in Cross River State and Nigeria at large.
In the present work we investigate the collapsing and expanding solutions of the Einstein's field equation of anisotropic fluid in spherically symmetric space-time and with charge within the framework of ${f(R, T)}$ theory, where $R$ denotes the Ricci scalar and $T$ denotes the trace of the energy$-$momentum tensor. We also evaluate the expansion scalar, whose negative values result in collapse and positive values yield expansion. We analyzed the impacts of charge in ${f(R, T)}$ theory on the density and pressure distribution of the collapsing and expanding fluid and noticed the involvement of anisotropic fluid in the process of collapsing and expanding with charge in $ {f(R, T)}$. Furthermore, the definition of mass function has been used to analyse the condition for the trapped surface, and it has been found that in this case there is only one horizon. In all scenarios, the effects of coupling parameters $\lambda$ and $q$ have been thoroughly examined. Additionally, we have created graphs representing pressures, anisotropy, and energy density in ${f(R, T)}$ theory and check the effect of charge on these quantities.