A. Zangiacomi, E. Pessot, R. Fornasiero, M. Bertetti, and M. Sacco, “Moving towards digitalization: A multiple case study in manufacturing,” Prod. Plann. Control, vol. 31, no. 2–3, pp. 143–157, 2020. [Google Scholar][Crossref]
2.
S. Erol, A. Jäger, P. Hold, K. Ott, and W. Sihn, “Tangible Industry 4.0: A scenario-based approach to learning for the future of production,” Procedia CIRP, vol. 54, pp. 13–18, 2016. [Google Scholar][Crossref]
3.
K. Rong, “Research agenda for the digital economy,” J. Digit. Econ., vol. 1, no. 1, pp. 20–31, 2022. [Google Scholar][Crossref]
4.
N. Urbach, F. Ahlemann, T. Böhmann, P. Drews, W. Brenner, F. Schaudel, and R. Schütte, “The impact of digitalization on the IT department,” Bus. Inf. Syst. Eng., vol. 61, pp. 123–131, 2019. [Google Scholar][Crossref]
5.
D. Horvat, H. Kroll, and A. Jäger, “Researching the effects of automation and digitalization on manufacturing companies’ productivity in the early stage of Industry 4.0,” Procedia Manuf., vol. 39, pp. 886–893, 2019. [Google Scholar][Crossref]
6.
L. Silvestri, A. Forcina, V. Introna, A. Santolamazza, and V. Cesarotti, “Maintenance transformation through Industry 4.0 technologies: A systematic literature review,” Comput. Ind., vol. 123, p. 103335, 2020. [Google Scholar][Crossref]
7.
P. Schneider, “Managerial challenges of Industry 4.0: An empirically backed research agenda for a nascent field,” Rev. Manag. Sci., vol. 12, no. 4, pp. 803–848, 2018. [Google Scholar][Crossref]
8.
D. P. Sakas, N. T. Giannakopoulos, M. C. Terzi, N. Kanellos, and A. Liontakis, “Digital transformation management of supply chain firms based on big data from DeFi social media profiles,” Electronics, vol. 12, no. 20, p. 4219, 2023. [Google Scholar][Crossref]
9.
G. B. Benitez, A. Ghezzi, and A. G. Frank, “When technologies become Industry 4.0 platforms: Defining the role of digital technologies through a boundary-spanning perspective,” Int. J. Prod. Econ., vol. 260, p. 108858, 2023. [Google Scholar][Crossref]
10.
J. Cenamor, V. Parida, and J. Wincent, “How entrepreneurial SMEs compete through digital platforms: The roles of digital platform capability, network capability and ambidexterity,” J. Bus. Res., vol. 100, pp. 196–206, 2019. [Google Scholar][Crossref]
11.
A. Ahmed, S. H. Bhatti, I. Gölgeci, and A. Arslan, “Digital platform capability and organizational agility of emerging market manufacturing SMEs: The mediating role of intellectual capital and the moderating role of environmental dynamism,” Technol. Forecast. Soc. Change, vol. 177, p. 121513, 2022. [Google Scholar][Crossref]
12.
A. G. Frank, G. H. Mendes, N. F. Ayala, and A. Ghezzi, “Servitization and Industry 4.0 convergence in the digital transformation of product firms: A business model innovation perspective,” Technol. Forecast. Soc. Change, vol. 141, pp. 341–351, 2019. [Google Scholar][Crossref]
13.
S. Chatterjee, N. P. Rana, Y. K. Dwivedi, and A. M. Baabdullah, “Understanding AI adoption in manufacturing and production firms using an integrated TAM-TOE model,” Technol. Forecast. Soc. Change, vol. 170, p. 120880, 2021. [Google Scholar][Crossref]
14.
A. Stark, K. Ferm, R. Hanson, M. Johansson, S. Khajavi, L. Medbo, and J. Holmström, “Hybrid digital manufacturing: Capturing the value of digitalization,” J. Oper. Manag., vol. 69, no. 6, pp. 890–910, 2023. [Google Scholar][Crossref]
15.
A. Jamwal, R. Agrawal, and M. Sharma, “Challenges and opportunities for manufacturing SMEs in adopting Industry 4.0 technologies for achieving sustainability: Empirical evidence from an emerging economy,” Oper. Manag. Res., pp. 1–26, 2023. [Google Scholar][Crossref]
16.
Y. X. Duan, “Can digital empowerment enhance the brand value of China’s enterprises?,” Technol. Anal. Strateg. Manag., vol. 34, no. 1, pp. 1–15, 2024. [Google Scholar][Crossref]
17.
R. Y. Zhong, X. Xu, E. Klotz, and S. T. Newman, “Intelligent manufacturing in the context of Industry 4.0: A review,” Eng., vol. 3, no. 5, pp. 616–630, 2017. [Google Scholar][Crossref]
18.
W. Urban, K. Łukaszewicz, and E. Krawczyk-Dembicka, “Application of Industry 4.0 to the product development process in project-type production,” Energies, vol. 13, no. 21, p. 5553, 2020. [Google Scholar][Crossref]
19.
A. Kusiak, “Smart manufacturing,” Int. J. Prod. Res., vol. 56, no. 1–2, pp. 508–517, 2018. [Google Scholar][Crossref]
20.
M. Ghobakhloo, “Determinants of information and digital technology implementation for smart manufacturing,” Int. J. Prod. Res, vol. 58, no. 8, pp. 2384–2405, 2020. [Google Scholar][Crossref]
21.
P. Aghion and R. Griffith, “Innovation and inequalities,” Institute for Fiscal Studies, 2022. https://ifs.org.uk/inequality/wp-content/uploads/2022/03/Innovation-and-inequalities-IFS-Deaton-Review-Inequalities.pdf [Google Scholar]
22.
N. Sinha and A. Kumar, “Challenges in implementation of Industry 4.0 in manufacturing sector,” in Next Generation Materials and Processing Technologies, Singapore: Springer, 2021. [Google Scholar][Crossref]
23.
T. Schøtt, Ö. Kunday, F. Boutaleb, E. Menipaz, W. A. Rahman, C. Bouhaddioui, F. Pereira, and M. A. Grijalba, “Intention to adopt digital technology in businesses: Promoted by early and recent digitalization and embedded in societal and temporal contexts,” Int. Rev. Entrep., vol. 20, no. 3, pp. 423–446, 2022. [Google Scholar]
24.
M. Fishbein and I. Ajzen, Belief, Attitude, Intention, and Behavior: An Introduction to Theory and Research. Massachusetts, USA: Addison-Wesley Publishing Company, 1975. [Google Scholar]
25.
G. Zacharis and K. Nikolopoulou, “Factors predicting university students’ behavioral intention to use eLearning platforms in the post-pandemic normal: An UTAUT2 approach with ‘Learning Value,’” Educ. Inf. Technol., vol. 27, pp. 12065–12082, 2022. [Google Scholar][Crossref]
26.
S. Gajendragadkar, R. Arora, R. Trivedi, and N. Neelam, “From intentions to action: How behavioural intentions shape employee performance through digital learning,” J. Workplace Learn., vol. 36, no. 5, pp. 348–363, 2024. [Google Scholar][Crossref]
27.
R. Basuki, Z. J. H. Tarigan, H. Siagian, L. S. Limanta, D. Setiawan, and J. Mochtar, “The effects of perceived ease of use, usefulness, enjoyment and intention to use online platforms on behavioral intention in online movie watching during the pandemic era,” Int. J. Data Netw. Sci., vol. 6, pp. 253–262, 2022. [Google Scholar][Crossref]
28.
S. Moghavvemi, N. A. Salleh, and C. Standing, “Entrepreneurs adoption of information system innovation: The impact of individual perception and exogenous factors on entrepreneurs behavior,” Internet Res., vol. 26, no. 5, pp. 1181–1208, 2016. [Google Scholar][Crossref]
29.
M. Hubert, M. Blut, B. Christian, R. W. Zhang, V. Koch, and R. Riedl, “The influence of acceptance and adoption drivers on smart home usage,” Eur. J. Mark., vol. 53, no. 6, pp. 1073–1098, 2019. [Google Scholar][Crossref]
30.
S. Thun, P. F. Kamsv\aag, B. Kløve, E. A. Seim, and H. Y. Torvatn, “Industry 4.0: Whose revolution? The digitalization of manufacturing work processes,” Nord. J. Work. Life Stud., vol. 9, no. 4, pp. 42–61, 2019. [Google Scholar][Crossref]
31.
N. Songkram, S. Chootongchai, H. Osuwan, Y. Chuppunnarat, and N. Songkram, “Students’ adoption towards behavioral intention of digital learning platform,” Educ. Inf. Technol., 2023. [Google Scholar][Crossref]
32.
V. Venkatesh, M. G. Morris, G. B. Davies, and F. D. Davis, “User acceptance of information technology: Toward a unified view,” MIS Q., vol. 27, no. 3, pp. 425–478, 2003. [Google Scholar][Crossref]
33.
H. E. Chueh and D.-H. Huang, “Usage intention model of digital assessment systems,” J. Bus. Res., vol. 156, p. 113469, 2023. [Google Scholar][Crossref]
34.
F. D. Davis, R. P. Bagozzi, and P. R. Warshaw, “User acceptance of computer technology: A comparison of two theoretical models,” J. Manag. Sci., vol. 35, no. 8, pp. 982–1003, 1989. [Google Scholar]
35.
L. Bollweg, R. Lackes, M. Siepermann, and P. Weber, “Drivers and barriers of the digitalization of local owner-operated retail outlets,” J. Small Bus. Entrep., vol. 32, no. 2, pp. 173–201, 2020. [Google Scholar][Crossref]
36.
D. Cordero, K. L. Altamirano, J. O. Parra, and W. S. Espinoza, “Intention to adopt Industry 4.0 by organizations in Colombia, Ecuador, Mexico, Panama, and Peru,” IEEE Access, vol. 11, pp. 8362–8386, 2023. [Google Scholar][Crossref]
37.
H. ElMaraghy, L. Monostori, G. Schuh, and W. ElMaraghy, “Evolution and future of manufacturing systems,” CIRP Annals, vol. 70, no. 2, pp. 635–658, 2021. [Google Scholar][Crossref]
38.
S. Thalmann, A. Fessl, and V. Pammer-Schindler, “How large manufacturing firms understand the impact of digitization: A learning perspective,” in 53rd Hawaii International Conference on System Sciences, 2020, pp. 1–10. [Google Scholar]
39.
S. Parhi, K. Joshi, T. Wuest, and M. Akarte, “Factors affecting Industry 4.0 adoption – A hybrid SEM-ANN approach,” Comput. Ind. Eng., vol. 168, p. 108062, 2022. [Google Scholar][Crossref]
40.
L. S. Dalenogare, G. B. Benitez, N. Ayala, and A. G. Frank, “The expected contribution of Industry 4.0 technologies for industrial performance,” Int. J. Prod. Econ., vol. 204, pp. 383–394, 2018. [Google Scholar][Crossref]
41.
K. Schwab, The Fourth Industrial Revolution. Crown Currency, 2017. [Google Scholar]
42.
G. Reischauer, “Industry 4.0 as policy-driven discourse to institutionalize innovation systems in manufacturing,” Technol. Forecast. Soc. Change, vol. 132, pp. 26–33, 2018. [Google Scholar][Crossref]
43.
H. Kagermann, W. Wahlster, and J. Helbig, “Recommendations for implementing the strategic initiative INDUSTRIE 4.0,” Acatech — National Academy of Science and Engineering, 2013. [Google Scholar]
44.
J. C. Anderson and D. W. Gerbing, “Structural equation modeling in practice: A review and recommended two-step approach,” Psychol. Bull., vol. 103, no. 3, pp. 411–423, 1988. [Google Scholar][Crossref]
45.
J. B. Schreiber, A. Nora, F. K. Stage, E. A. Barlow, and J. King, “Reporting structural equation modelling and confirmatory factor analysis results: A review,” J. Educ. Res., vol. 99, no. 6, pp. 323–337, 2006. [Google Scholar][Crossref]
46.
C. Fornell and D. F. Larcker, “Evaluating structural equation models with unobservable variables and measurement error,” J. Mark. Res., vol. 18, no. 1, pp. 39–50, 1981. [Google Scholar][Crossref]
47.
K. H. Yuan and P. M. Bentler, “10 structural equation modeling,” in Handbook of Statistics, 2006, pp. 297–358. [Google Scholar][Crossref]
48.
M. E. Civelek, Essentials of Structural Equation Modeling. Nebraska, USA: Zea Books, 2018. [Google Scholar]
49.
D. W. Ko and W. P. Stewart, “A structural equation model of residents’ attitudes for tourism development,” Tour. Manag., vol. 23, no. 5, pp. 521–530, 2002. [Google Scholar][Crossref]
50.
B. M. Byrne, “Testing for multigroup invariance using graphics: A road less traveled,” Struct. Equ. Model. A Multidiscip. J., vol. 11, no. 2, pp. 272–300, 2004. [Google Scholar][Crossref]
51.
J. F. Hair, R. E. Anderson, R. L. Tatham, and W. Black, Multivariate Date Analysis. New Jersey, USA: Prentice-Hall, 1998. [Google Scholar]
52.
L. J. Cronbach, “Coefficient alpha and the internal structure of tests,” Psychometrika, vol. 16, pp. 297–334, 1951. [Google Scholar][Crossref]
53.
J. C. Nannally, Psychometric Theory. New York, USA: McGraw-Hill, 1978. [Google Scholar]
54.
D. George and P. Mallery, “Frequencies,” in IBM SPSS Statistics 23 Step by Step, New York, USA: Routledge, 2016, pp. 115–125. [Google Scholar]
55.
T. A. Brown, Confirmatory Factor Analysis for Applied Research. New York, USA: Guilford Press, 2006. [Google Scholar]