Javascript is required
1.
J. A. Goguen, “L. A. Zadeh. Fuzzy sets. Information and control, vol. 8 (1965), pp. 338–353. - L. A. Zadeh. Similarity relations and fuzzy orderings. Information sciences, vol. 3 (1971), pp. 177–200.,” J. Symb. Logic, vol. 38, no. 4, pp. 656–657, 1973. [Google Scholar] [Crossref]
2.
K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets Syst., vol. 20, no. 1, pp. 87–96, 1986. [Google Scholar] [Crossref]
3.
K. Atanassov and G. Gargov, “Interval valued intuitionistic fuzzy sets,” Fuzzy Sets Syst., vol. 31, no. 3, pp. 343–349, 1989. [Google Scholar] [Crossref]
4.
F. E. Boran and D. Akay, “A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition,” Inf. Sci., vol. 255, pp. 45–57, 2014. [Google Scholar] [Crossref]
5.
H. Nguyen, “A new knowledge-based measure for intuitionistic fuzzy sets and its application in multiple attribute group decision making,” Expert Syst. Appl., vol. 42, no. 22, pp. 8766–8774, 2015. [Google Scholar] [Crossref]
6.
J. Mahanta and S. Panda, “A novel distance measure for intuitionistic fuzzy sets with diverse applications,” Int. J. Intell. Syst., vol. 36, no. 2, pp. 615–627, 2021. [Google Scholar] [Crossref]
7.
R. R. Yager, “Pythagorean fuzzy subsets,” in 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 2023, pp. 57–61. [Google Scholar] [Crossref]
8.
R. Ronald  Yager, “Generalized orthopair fuzzy sets,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1222–1230, 2016. [Google Scholar]
9.
B. C. Cuong, “Picture fuzzy sets,” vol. 30, no. 4, pp. 409–420, 2015. [Google Scholar] [Crossref]
10.
B. C. Cuong and V. H. Pham, “Some fuzzy logic operators for picture fuzzy sets,” in 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE), Ho Chi Minh City, Vietnam, 2015, pp. 132–137. [Google Scholar] [Crossref]
11.
T. Mahmood, K. Ullah, Q. Khan, and N. Jan, “An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets,” Neural Comput. Appl., vol. 31, no. 11, pp. 7041–7053, 2019. [Google Scholar]
12.
R. Khan, K. Ullah, D. Pamucar, and M. Bari, “Performance measure using a multi-attribute decision making approach based on complex T-spherical fuzzy power aggregation operators,” J. Comput. Cogn. Eng., 2022. [Google Scholar] [Crossref]
13.
T. Senapati, G. Chen, R. Mesiar, and R. Ronald  Yager, “Novel Aczel–Alsina operations-based interval-valued intuitionistic fuzzy aggregation operators and their applications in multiple attribute decision-making process,” Int. J. Intell. Syst., 2022. [Google Scholar] [Crossref]
14.
C. Jana, T. Senapati, and M. Pal, “Pythagorean fuzzy dombi aggregation operators and its applications in multiple attribute decision-making,” Int. J. Intell. Syst., vol. 34, no. 9, pp. 2019–2038, 2019. [Google Scholar] [Crossref]
15.
T. Senapati, “Approaches to multi-attribute decision-making based on picture fuzzy Aczel–Alsina average aggregation operators,” Comp. Appl. Math., vol. 41, no. 40, pp. 1–19, 2022. [Google Scholar] [Crossref]
16.
M. R. Khan, K. Ullah, D. Pamucar, and M. Bari, “P“Performance measure using a multi-attribute decision-making approach based on complex T-spherical fuzzy power aggregation operators,” J. Comput. Cogn. Eng., vol. 3, no. 1, pp. 138–146, 2022. [Google Scholar] [Crossref]
17.
T. Mahmood and Z. Ali, “Prioritized muirhead mean aggregation operators under the complex single-valued neutrosophic settings and their application in multi-attribute decision-making,” J. Comput. Cogn. Eng., vol. 2, no. 1, pp. 56–73, 2022. [Google Scholar] [Crossref]
18.
M. Riaz and H. M. A. Farid, “Picture fuzzy aggregation approach with application to third-party logistic provider selection process,” Rep. Mech. Eng., vol. 3, no. 1, pp. 318–327, 2022. [Google Scholar] [Crossref]
19.
M. Riaz, H. Garg, H. M. A. Farid, and R. Chinram, “Multi-Criteria Decision Making Based on Bipolar Picture Fuzzy Operators and New Distance Measures,” Comput. Model. Eng. Sci., vol. 127, no. 2, pp. 771–800, 2021. [Google Scholar] [Crossref]
20.
H. Garg, “Intuitionistic fuzzy hamacher aggregation operators with entropy weight and their applications to multi-criteria decision-making problems,” Iran. J. Sci. Technol. Trans. Electr. Eng., vol. 43, no. 3, pp. 597–613, 2019. [Google Scholar] [Crossref]
21.
A. Ashraf, K. Ullah, A. Hussain, and M. Bari, “Interval-valued picture fuzzy maclaurin symmetric mean operator with application in multiple attribute decision-making,” Rep. Mech. Eng., vol. 3, no. 1, pp. 301–317, 2022. [Google Scholar] [Crossref]
22.
H. Garg, “Confidence levels based pythagorean fuzzy aggregation operators and its application to decision-making process,” Comput. Math. Organ. Theory, vol. 23, no. 4, pp. 546–571, 2017. [Google Scholar] [Crossref]
23.
D. Pamucar, A. E. Torkayesh, and S. Biswas, “Supplier selection in healthcare supply chain management during the COVID-19 pandemic: A novel fuzzy rough decision-making approach,” Ann. Oper. Res., pp. 1–43, 2022. [Google Scholar] [Crossref]
24.
M. Sarfraz, K. Ullah, M. Akram, D. Pamucar, and D. Božanić, “Prioritized aggregation operators for intuitionistic fuzzy information based on Aczel–Alsina T-norm and T-conorm and their applications in group decision-making,” Symmetry, vol. 14, no. 12, 2022. [Google Scholar] [Crossref]
25.
A. Hussain and D. Pamucar, “Multi-attribute group decision-making based on pythagorean fuzzy rough set and novel Schweizer-sklar T-norm and T-conorm,” J. Innov. Res. Math. Comput. Sci., vol. 1, no. 2, pp. 1–17, 2022. [Google Scholar]
26.
A. Hussain, X. Zhu, K. Ullah, M. Sarfaraz, S. Yin, and D. Pamucar, “Multi-attribute group decision-making based on pythagorean fuzzy rough Aczel-Alsina aggregation operators and its applications to medical diagnosis,” Heliyon, vol. 9, no. 12, p. e23067, 2023. [Google Scholar] [Crossref]
27.
M. Sarfraz, “Multi-attribute decision-making for T-spherical fuzzy information utilizing schweizer-sklar prioritized aggregation operators for recycled water,” vol. 2, no. 1, pp. 105–128, 2024. [Google Scholar] [Crossref]
28.
K. Ullah, M. Sarfraz, M. Akram, and Z. Ali, “Identification and classification of prioritized Aczel-Alsina aggregation operators based on complex intuitionistic fuzzy information and their applications in decision-making problem,” in Fuzzy Optimization, Decision-making and Operations Research: Theory and Applications, C. Jana, M. Pal, G. Muhiuddin, and P. Liu, Eds., Springer International Publishing, 2023, pp. 377–398. [Google Scholar] [Crossref]
29.
W. S. Du and B. Q Hu, “Aggregation distance measure and its Induced similarity measure between intuitionistic fuzzy sets,” vol. 60, pp. 65–71, 2015. [Google Scholar] [Crossref]
30.
Y. Donyatalab, E. Farrokhizadeh, and S. A. S. Shishavan, “Similarity measures of q-Rung orthopair fuzzy sets based on square root cosine similarity function,” in International Conference on Intelligent and Fuzzy Systems, Springer, 2020, pp. 475–483. [Google Scholar] [Crossref]
31.
W. R. W. Mohd and L. Abdullah, “Similarity measures of pythagorean fuzzy sets based on combination of cosine similarity measure and euclidean distance measure,” in AIP Conference Proceedings, AIP Publishing LLC, 2018, p. 030017. [Google Scholar] [Crossref]
32.
G. Wei, “Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making,” Informatica, vol. 28, no. 3, pp. 547–564, 2017. [Google Scholar] [Crossref]
33.
N. Van Dinh and N. Xuân Thảo, “Some measures of picture fuzzy sets and their application in multi-attribute decision making,” Int. J. Math. Sci. Comput., vol. 4, pp. 23–41, 2018. [Google Scholar] [Crossref]
34.
P. Singh, N. K. Mishra, M. Kumar, S. Saxena, and V. Singh, “Risk analysis of flood disaster based on similarity measures in picture fuzzy environment,” Afrika Matematika, vol. 29, pp. 1019–1038, 2018. [Google Scholar] [Crossref]
35.
M. Luo and Y. Zhang, “A new similarity measure between picture fuzzy sets and its application,” Eng. Appl. Artif. Intell., vol. 96, p. 103956, 2020. [Google Scholar] [Crossref]
36.
M. Rafiq, S. Ashraf, S. Abdullah, T. Mahmood, and S. Muhammad, “The cosine similarity measures of spherical fuzzy sets and their applications in decision making,” J. Intell. Fuzzy Syst., vol. 36, no. 6, pp. 6059–6073, 2019. [Google Scholar] [Crossref]
37.
R. R. Zhao, M. X. Luo, S. G. Li, and L. N. Ma, “A parametric similarity measure between picture fuzzy sets and its applications in multi-attribute decision-making,” Iranian J. Fuzzy Syst., vol. 20, no. 1, pp. 87–102, 2023. [Google Scholar] [Crossref]
38.
X. Shen, S. Sakhi, K. Ullah, M. N. Abid, and Y. Jin, “Information measures based on T-spherical fuzzy sets and their applications in decision making and pattern recognition,” Axioms, vol. 11, no. 7, p. 302, 2022. [Google Scholar] [Crossref]
39.
K. Ullah, T. Mahmood, and N. Jan, “Similarity measures for T-spherical fuzzy sets with applications in pattern recognition,” Symmetry, vol. 10, no. 6, p. 193, 2018. [Google Scholar] [Crossref]
40.
Y. Jin, M. Hussain, K. Ullah, and A. Hussain, “A new correlation coefficient based on T-spherical fuzzy information with its applications in medical diagnosis and pattern recognition,” Symmetry, vol. 14, no. 11, p. 2317, 2022. [Google Scholar] [Crossref]
41.
K. Ullah, T. Mahmood, and N. Jan, ““Similarity measures for T-spherical fuzzy sets with applications in pattern recognition,” Symmetry, vol. 10, no. 6, p. 193, 2018. [Google Scholar] [Crossref]
Search
Open Access
Research article

Parametric Similarity Measurement of T-Spherical Fuzzy Sets for Enhanced Decision-Making

Mehwish Sarfraz1*,
Muhammad Azeem2
1
Department of Mathematics, Riphah International University (Lahore Campus), 54000 Lahore, Pakistan
2
Department of Aerospace Engineering, Faculty of Engineering, University Putra Malaysia, 43400 Seri Kembangan, Malaysia
International Journal of Knowledge and Innovation Studies
|
Volume 2, Issue 1, 2024
|
Pages 29-44
Received: 02-05-2024,
Revised: 03-09-2024,
Accepted: 03-16-2024,
Available online: 03-30-2024
View Full Article|Download PDF

Abstract:

The T-spherical fuzzy set (T-SFS), an advancement over the spherical fuzzy set (SFS), offers a refined approach for addressing contradictions and ambiguities in data. In this context, similarity measures (SMs) serve as critical tools for quantifying the resemblance between fuzzy values, traditionally relying on the calculation of distances between these values. Nevertheless, existing methodologies often encounter irrational outcomes due to certain characteristics and complex operations involved. To surmount these challenges, a novel parametric similarity measure is proposed, grounded in three adjustable parameters. This enables decision-makers to tailor the SM to suit diverse decision-making styles, thereby circumventing the aforementioned irrationalities. An analytical comparison with existing SM reveals the superiority of the proposed measure through mathematical validation. Furthermore, the utility of this measure is demonstrated in the resolution of multi-attribute decision-making (MADM) problems, highlighting its efficacy over several existing approaches within the domain of T-SFS. The implementation of the proposed SM not only enhances the precision of similarity assessment in fuzzy sets but also significantly contributes to the optimization of decision-making processes.
Keywords: Fuzzy set (FS), Spherical fuzzy set (SFS), T-spherical fuzzy set (T-SFS), Similarity measure (SM), Multi-attribute decision-making (MADM)

1. Introduction

The process of extracting and analyzing information from real-world problems is fraught with ambiguity and uncertainty. There have been numerous initiatives to lessen that uncertainty. There have been numerous initiatives to lessen that uncertainty. Zadeh popularized the idea of the FS [1], which is a well-known method of reducing uncertainty. The notion of the extension of the crisp set in practice characterizes an object's belongingness through the membership degree (MD). Atanassov [2] tried to reduce the uncertainty by coming up with the idea of intuitionistic FS (IFS). This expanded on the FS idea and defined an object's belongingness by both MD and non-membership degree (NMD). By using the MD and NMD as intervals from [0, 1], Atanassov and Gargov [3] formalized the interval-valued IFS in order to obtain greater accuracy during the information extraction process. Numerous researchers in a variety of domains, including pattern recognition [4], decision-making [5], and medical diagnosis [6], among others, used IFS. The MD and NMD could only have a limited amount of space assigned to them by IFS since the sum of the MD and NMD did not fall inside. The IFS was therefore a narrowly scoped framework. The IFS was made bigger by Yager [7] and Yager and Ronald [8], who came up with the ideas of the Pythagorean FS (PyFS) and the q-rung orthopair FS (qROFS).

Because IFS, PyFS, and qROFS can reduce vagueness in information extraction, their applications have a lot of potential in real-world scenarios. However, because these tools only have two degrees for an element's description, there are some scenarios in which they are unable to extract information without information loss. Cuong [9] presented the picture FS (PFS) with an extra degree called the abstinence degree (AD) to illustrate the belongingness of an object using three degrees. Numerous academics have used the PFS, as seen in [10]. However, there were times when the PFS concept failed because it was not met. For instance, the MD, AD, and NMD have respective values of. In this instance. As such, the PFS was an extremely constrained method. In order to broaden the scope of the PFS, Mahmood et al. [11] presented the notions of T-SFS and SFS. Therefore, the most recent framework that can extract information with the highest level of accuracy is the T-SFS.

Finding the best option from a list of options can be done with interest using the MADM technique. The fuzzy theory's introduction has completely transformed and advanced MADM. Many academics have used various environments to improve the MADM process. Khan et al. [12] employed complicated T-SFS to address the MADM issue. Interval-valued IFS was utilized by Senapati et al. [13] to address the MADM problem. PyFS was utilized by Jana et al. [14] to address the MADM issue. PFS was utilized by Senapati and Tapan [15] to address the MADM issue. Khan et al. [16] Employed sophisticated T-SFS to address the MADM issue. Mahmood and Ali [17] solved the MADM problem by using complex single-valued neutrosophic (CSVNS). Employed sophisticated T-SFS to address the MADM issue. Riaz and Farid [18] employed a complex PFS to address the MADM issue. Khan et al. [19] employed sophisticated T-SFS to address the MADM issue. Riaz et al. [19] employed bipolar FS to address the MADM issue. Garg [20] IFS to address the MADM issue. Interval-valued PFS was utilized by Ashraf et al. [21] to address the MADM issue. Garg [22] employed PyFS to address the MADM issue. Pamucar et al. [23] employed qROFS to address the MADM issue. Sarfraz et al. [24] gave the idea of prioritized aggregation operators. A. Hussain and Pamucar [25] develop the theory of MADM using the rough fuzzy set. Hussain et al. [26] give the concept of MADM on the basis of the Aczel-Alsina aggregation operator. Sarfraz [27] developed the theory of MADM using the application of T-SFS. Ullah et al. [28] develop the theory of Aczel-Alsina using the application of MADM.

When assessing the degree of similarity between two fuzzy values (FVs), SM is an important tool. Numerous academics have been introduced to intriguing applications in pattern recognition, MADM, and medical diagnosis based on various SM types. The SMs for the IFS framework are introduced by Boran and Akay [4] and Du and Hu [29], where it is also discussed how to apply the developed SMs to pattern recognition. The SM for qROFS was presented by Donyatalab et al. [30], and the SMs for PyFS were presented in [31], along with a discussion of their intriguing applications. The base of the cosine function and the contingent function, respectively, for the PFS are the cosine SMs and contingent SMs, which Wei [32] introduced and applied to the MADM. Dice SM was created by Wei and Geo [30] for the PFS. A few SMs for PFS were presented by Dinh and Thao [33] and applied to the MADM problem. By taking into account the PFS's refusal degree, Singh et al. [34] expanded the SMs and used them to address the clustering issue. The SMs were introduced by Luo and Zhang [35] and are based on a few fundamental PFS operations. The idea of the SM for SFS was presented by Rafiq et al. [36] and applied to the MADM. Zhao et al. [37] created the SMs for the T-SFS framework and used them in both MADM and the pattern recognition problem. presented the SMs for the T-SFS and used them in the pattern recognition process Shen et al. [38]. Ullah et al. [39] presented the SMs for the T-SFS framework and used them to solve the pattern recognition problem. In a similar vein, [38] described the SMs for the T-SFS and their uses in pattern recognition. Jin et al. [40] presented the SMs for the T-SFS and then used them to solve the pattern recognition and medical diagnosis problems. Below are some key takeaways from the SMs that were previously discussed.

• Due to the limited amount of information that these frameworks are able to extract from real-world scenarios, all of the SMs for the IFS, PYFS, qROFS, and PFS are outdated. Because of the uncertainty and information loss, decision-makers are unable to arrive at the best decisions. As a result, the T-SFS should define the advanced SMs that can more accurately determine how similar two FVs are.

• In some unique circumstances, a few of the SMs covered above fail to compute. For instance, because of the division by zero problems, certain SMs do not provide the decision results.

• As a result, the main contribution of this study is to enhance the SMs' capacity for identification and address their shortcomings; in order to do this, a new SM must be proposed.

First, some fundamental ideas are covered in Section 2 of this paper. Section 3 presents an overview of the current standard methods of SMs and addresses their limitations. The new SM for T-SFS is developed and uses the parameters to improve and generalize the current SMs for T-SFS. The application of the suggested SMs to the MADM problem is shown in Section 4, and the study is summarized in Section 5.

2. Preliminaries

This section presents some basic concept to understand the article.

Definition 1 [2]: The shape of an IFS on a set $X$ is $X=\left\{\left(\mu,\left(\alpha, \varphi^{\prime}\right)\right): 0 \leq \alpha u \hbar\left(\alpha(\mu), \varphi^{\prime}(\mu)\right) \leq 1\right\}$. Moreover, the pair $\left(\alpha, \varphi^{\prime}\right)$ is referred to as an intuitionist FV (IFV), and $r(\mu)=1-\alpha u \hbar\left(\alpha, \varphi^{\prime}\right)$ denotes the hesitancy degree of $\mu \in X$.

Definition 2 [7]: A PyFS with the form $X=\left\{\left(\mu,\left(\alpha, \varphi^{\prime}\right)\right): 0 \leq \alpha u \hbar\left(\alpha^2(\mu), \varphi^{\prime 2}(\mu)\right) \leq 1\right\}$ exists on a set $X$. Additionally, the hesitancy degree of $\mu \in X$ is represented by $r(\mu)=1-\alpha u \hbar\left(\alpha^2(\mu), \varphi^{\prime 2}(\mu)\right)$, and the pair $\left(\alpha, \varphi^{\prime}\right)$ is referred to as a Pythagorean FV (PyFV).

Definition 3 [9]: A PFS of the form $X=\left\{\left(\mu,\left(\alpha, \tau, \varphi^{\prime}\right)\right): 0 \leq \alpha u \hbar\left(\alpha(\mu), \tau(\mu), \varphi^{\prime}(\mu)\right) \leq 1\right\}$ exists on a set $X$. Additionally, the refusal degree of $\mu \in X$ is represented by $r(\mu)=1-\alpha u \hbar\left(\alpha(\mu), \tau(\mu), \varphi^{\prime}(\mu)\right)$ and the pair $\left(\alpha, \tau, \varphi^{\prime}\right)$ is referred to as a picture $\mathrm{FV}(\mathrm{PFV})$.

Definition 4 [11]: A SFS for every universal set $\mathrm{X}$ has the form $X=\left\{\left(\mu,\left(\alpha, \tau, \varphi^{\prime}\right)\right): \forall \mu \in X\right\}$. Here, $\alpha, \tau$, and $\varphi^{\prime}$ are mappings form $X \rightarrow[ 0,1]$ denoting $\mathrm{MD}, \mathrm{AD}$, and NMD respectively, provided that $0 \leq$ $\operatorname{sum}\left(\alpha^2(\mu), \tau^2(\mu), \varphi^{\prime 2}(\mu)\right) \leq 1$ and $r(\mu)=\sqrt{1-\operatorname{sum}\left(\alpha^2(\mu), \tau^2(\mu), \varphi^{\prime 2}(\mu)\right)}$ are known as the refusal degree (RD) of $r(\mu)$. A spherical FV (SFV) is thought to be the triplet $\left(\alpha, \tau, \varphi^{\prime}\right)$.

Definition 5 [11]: A T-SFS has the form $X=\left\{\left(\mu,\left(\alpha, \tau, \varphi^{\prime}\right)\right): \forall \mu \in X\right\}$ for any universal set $\mathrm{X}$. Here, $\alpha, \tau$, and $\varphi^{\prime}$ are mappings form $X \rightarrow[ 0,1]$ denoting $\mathrm{MD}, \mathrm{AD}$, and NMD, respectively, provided that for some $\eta \in z^{+} \quad 0 \leq \operatorname{sum}\left(\alpha^\eta(\mu), \tau^\eta(\mu), \varphi^{\prime \eta}(\mu)\right) \leq 1 \quad$ and $\quad r(\mu)=\sqrt{1-\operatorname{sum}\left(\alpha^2(\mu), \tau^2(\mu), \varphi^{\prime 2}(\mu)\right)}$ is known as the RD of $r(\mu)$. It is believed that the triplet $\left(\alpha, \tau, \varphi^{\prime}\right)$ is a T-spherical FV (T-SFV).

Remark 1:

Let $\eta=2$ so T-SFS degenerate SFS.

Let $\eta=1$ so T-SFS degenerate PFS.

Let $\eta=2, \tau=0$ so T-SFS degenerate PyFS.

Let $\eta=1, \tau=0$ T-SFS degenerate IFS.

Let $\eta=1, \tau=\varphi=0$ so TSFS degenerate FS.

Definition 6 [11]: Let $\varsigma=\left\{\left(\mu, \alpha_{\varsigma}^\eta(\mu), \tau_{\varsigma}^\eta(\mu), \varphi_{\varsigma}^{\prime \eta}(\mu)\right) \mid \mu \in X\right\}$ and $\sigma=\left\{\left(\mu, \alpha_\sigma^\eta(\mu), \tau_\sigma^\eta(\mu), \varphi_\sigma^{\prime \eta}(\mu)\right) \mid \mu \in X\right\}$, then

$\varsigma \subseteq \sigma$ If and only if $\alpha_{\varsigma}^\eta(\mu) \leq \alpha_\sigma^\eta(\mu), \tau_{\varsigma}^\eta(\mu) \geq \tau_\sigma^\eta(\mu), \varphi_{\varsigma}^{\prime \eta}(\mu) \geq \varphi_\sigma^{\prime \eta}(\mu)$. For $\mu \in X$.

$\varsigma=\sigma$ If and only if $\varsigma \subseteq \sigma$ and $\sigma \subseteq \varsigma$

i.e., $\alpha_{\varsigma}^\eta(\mu)=\alpha_\sigma^\eta(\mu), \tau_{\varsigma}^\eta(\mu)=\tau_\sigma^\eta(\mu), \varphi_{\varsigma}^{\prime \eta}(\mu)=\varphi_{\varsigma}^{\prime \eta}(\mu)$,

$\varsigma^c=\left\{\left(\mu, \alpha_{\varsigma}^\eta(\mu), \tau_{\varsigma}^\eta(\mu), \varphi_{\varsigma}^{\prime \eta}(\mu)\right) \mid \mu \in X\right\}$.

Definition 7 [37]: Let $\varsigma=\left\{\left(\mu, \alpha_{\varsigma}^\eta(\mu), \tau_{\varsigma}^\eta(\mu), \varphi_{\varsigma}^{\prime \eta}(\mu)\right) \mid \mu \in X\right\}$ and $\sigma=\left\{\left(\mu, \alpha_\sigma^\eta(\mu), \tau_\sigma^\eta(\mu), \varphi_\sigma^{\prime \eta}(\mu)\right) \mid \mu \in X\right\}$ be any two be T-SFSs on universe $X$, then the SM among $\varsigma$ and $\sigma$ is demarcated as $\beta(\varsigma, \sigma)$, which fulfills the following axioms:

$\left(\vartheta_1\right) 0 \leq \beta(\varsigma, \sigma) \leq 1$;

$\left(\vartheta_2\right) \beta(\varsigma, \sigma)=1 \text { Iff } \varsigma=\sigma$;

$\left(\vartheta_3\right) \beta(\varsigma, \sigma)=\beta(\sigma, \varsigma)$;

$\left(\vartheta_4\right)$ Let $C$ be any T-SFS such that $\varsigma\subseteq \sigma \subseteq C$, then $\beta(\varsigma, C) \leq \beta(\varsigma, \sigma)$ and $\beta(\varsigma, C) \leq \beta(\sigma, C)$;

Now, we evaluate some standing similarity measures between T-SFSs in the behind.

Let $\varsigma=\left\{\left(\mu_\tau, \alpha_{\varsigma}\left(\mu_\tau\right), \tau_{\varsigma}\left(\mu_\tau\right), \varphi_{\varsigma}^{\prime}\left(\mu_\tau\right)\right) \mid \mu_\tau \in X\right\}$ and $\sigma=\left\{\left(\mu_\tau, \alpha_\sigma\left(\mu_\tau\right), \tau_\sigma\left(\mu_\tau\right), \varphi_\sigma^{\prime}\left(\mu_\tau\right)\right) \mid \mu_\tau \in X\right\}$ be any two be T-SFSs on $X=\left\{\mu_1, \mu_2, \ldots, \mu_\eta\right\}, \rho_{\varsigma}\left(\mu_\tau\right)$ and $\rho_\sigma\left(\mu_\tau\right)$ be the refusal degrees of element $\mu_\tau$ belonging to T-SFSs $\varsigma$ and $\sigma$ respectively, where $\rho_{\varsigma}\left(\mu_\tau\right)=1-\alpha_{\varsigma}^\eta\left(\mu_\tau\right), \tau_{\varsigma}^\eta\left(\mu_\tau\right), \varphi_\varsigma^{\prime \eta}\left(\mu_\tau\right)$ and $\rho_\sigma\left(\mu_\tau\right)=1-$ $\alpha_\sigma^\eta\left(\mu_\tau\right), \tau_\sigma^\eta\left(\mu_\tau\right), \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)$. The existing similarity degrees between T-SFSs $\varsigma$ and $\sigma$ are reviewed as follows:

where, $\tau=1,2,3 \ldots \eta$.

The SMs defined by Shen et al. [38] based on the T-SFS is given as follows.

$\begin{gathered} \beta_1(\varsigma, \sigma)=1-\frac{1}{2 \eta} \sum_{\tau=1}^\eta\left(\left|\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right|+\left|\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right|+\left|\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right|+\mid \rho_{\varsigma}^\eta\left(\mu_\tau\right)\right.\\ \left.-\rho_\sigma^\eta\left(\mu_\tau\right) \mid\right) \end{gathered}$
(1)
$\beta_2(\varsigma, \sigma)=1-\frac{1}{2 \eta} \sum_{\tau=1}^\eta\left|\left(\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\varphi_{\varsigma}^{\prime}\left(\mu_\tau\right)-\varphi_\sigma^{\prime\eta}\left(\mu_\tau\right)\right)\right)\right|$
(2)
$\beta_3(\varsigma, \sigma)=\frac{1}{4 \eta} \sum_{\tau=1}^\eta\binom{\left|\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right|+\left|\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right|}{+\left|\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right|+\left|\rho_{\varsigma}^\eta\left(\mu_\tau\right)-\rho_\sigma^\eta\left(\mu_\tau\right)\right|}\nonumber\\+\sum_{\tau=1}^\eta\binom{\mid\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)-}{\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\varphi_{\varsigma}^{\prime\eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime\eta}\left(\mu_\tau\right)\right) \mid}$
(3)
$\begin{gathered} \beta_4(\varsigma, \sigma)=1-\frac{1}{\eta} \sum_{\tau=1}^\eta\left(\left|\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right) \vee\right| \tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)|\vee| \varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right. \\ \left.-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right) \mid\right) \end{gathered}$
(4)
$\beta_5(\varsigma, \sigma)=1-\frac{1}{\eta} \sum_{\tau=1}^\eta \frac{1-\left(\left|\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right| \vee\left|\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right| \vee\left|\varphi_{\varsigma}^{\prime}\left(\mu_\tau\right)-\varphi_\sigma^{\prime}\left(\mu_\tau\right)\right|\right)}{1+\left(\left|\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right| \vee\left|\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right| \vee\left|\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime}\left(\mu_\tau\right)\right|\right)}$
(5)
$\beta_6(\varsigma, \sigma)=\frac{\sum_{\tau=1}^\eta 1-\left(\left|\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right| \vee\left|\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right| \vee\left|\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right|\right)}{\sum_{\tau=1}^\eta 1+\left(\left|\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right| \vee\left|\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right| \vee\left|\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right|\right)}$
(6)
$\beta_7(\varsigma, \sigma)=\frac{1}{\eta} \sum_{\tau=1}^\eta \frac{\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right) \wedge \alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right) \wedge \tau_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right) \wedge \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)}{\left.\left(\alpha_\tau^\eta\right) \vee \alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right) \vee \tau_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right) \vee \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)}$
(7)
$\beta_8(\varsigma, \sigma)=\frac{\sum_{\tau=1}^\eta\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right) \wedge \alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right) \wedge \tau_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right) \wedge \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)}{\sum_{\tau=1}^\eta\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right) \vee \alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right) \vee \tau_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right) \vee \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)}$
(8)
$\beta_9(\varsigma, \sigma)=\frac{1}{\eta} \sum_{\tau=1}^\eta \frac{\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right) \wedge \alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(1-\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right) \wedge\left(1-\tau_\sigma^\eta\left(\mu_\tau\right)\right)+\left(1-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right) \wedge\left(1-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)}{\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right) \wedge \alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(1-\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right) \vee\left(1-\tau_\sigma^\eta\left(\mu_\tau\right)\right)+\left(1-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right) \vee\left(1-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)}$
(9)
$\begin{aligned} \beta_{10}(\varsigma, \sigma) ==\frac{\sum_{\tau=1}^\eta\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right) \wedge \alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(1-\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right) \wedge\left(1-\tau_\sigma^\eta\left(\mu_\tau\right)\right)+\left(1-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right) \wedge\left(1-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)}{\sum_{\tau=1}^\eta\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right) \wedge \alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(1-\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right) \vee\left(1-\tau_\sigma^\eta\left(\mu_\tau\right)\right)+\left(1-{\varphi}^{\prime \eta}\left(\mu_\tau\right)\right) \vee\left(1-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)} \end{aligned}$
(10)

Ullah et al. [41] provided the following SMs for the T-SFS environment, which are based on the cosine function.

$\begin{aligned} \beta_{11}(\varsigma, \sigma)=\frac{1}{\eta} \sum_{\tau=1}^\eta \frac{\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right) \cdot \alpha_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right) \cdot \tau_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right) \cdot \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)^2}{\sqrt{\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)^2} \sqrt{\left(\alpha_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)^2}} \end{aligned}$
(11)
$\begin{aligned} \beta_{12}(\varsigma, \sigma)=\frac{1}{\eta} \sum_{\tau=1}^\eta \omega_\tau \frac{\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right) \cdot \alpha_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right) \cdot \tau_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right) \cdot \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)^2}{\sqrt{\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)^2} \sqrt{\left(\alpha_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)^2}} \end{aligned}$
(12)
$\begin{aligned} \beta_{13}(\varsigma, \sigma)=\frac{1}{\eta} \sum_{\tau=1}^\eta \frac{\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right) \cdot \alpha_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right) \cdot \tau_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right) \cdot \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)^2}{\left(\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)^2\right) \cdot\left(\left(\alpha_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)^2\right)} \end{aligned}$
(13)
$\begin{aligned} \beta_{14}(\varsigma, \sigma)=\frac{1}{\eta} \sum_{\tau=1}^\eta \omega_\tau \frac{\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right) \cdot \alpha_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right) \cdot \tau_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right) \cdot \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)^2}{\left(\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_{\varsigma}^{\prime}\left(\mu_\tau\right)\right)^2\right) \cdot\left(\left(\alpha_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)^2\right)} \end{aligned}$
(14)

3. A Review of a Few T-spherical Fuzzy Similarity Metrics that are Currently in Use

Using the SM as an arithmetic tool to determine the degree of similarity between substances, decision-making, clinical determination, and example acknowledgment problems have all been resolved. Despite the fact that many SMs between T-SFSs have been proposed, their practical application can lead to irrational and counterintuitive outcomes that pose significant challenges for functional clients. In this section, we thoroughly examine a few of the SMs that are currently in use from a mathematical perspective, as shown in Table 1 in the subsequent.

One of the fundamental axioms of $\mathrm{T}$-spherical SMs is $\vartheta_2$. It is evident from examining Table 1 that the similarity measures $\beta_5, \beta_7, \beta_8, \beta_{12}$, and $\beta_{14}$ do not meet this axiom. The following is a detailed discussion:

(1) Let $\varsigma=\left\{\left(\mu_\tau, \alpha_{\varsigma}^\eta\left(\mu_\tau\right), \tau_{\varsigma}^\eta\left(\mu_\tau\right), \varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right) \mid \mu_\tau \in X\right\}$ and $\sigma=\left\{\left(\mu_\tau, \alpha_\sigma^\eta\left(\mu_\tau\right), \tau_\sigma^\eta\left(\mu_\tau\right), \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right) \mid \mu_\tau \in X\right\}$ be any two be T-SFSs on $X=\left\{\mu_1, \mu_2, \ldots, \mu_\eta\right\}$. As demonstrated below, there are two situations in which the similarity measure $\beta_{12}$ does not meet the axiom $\left(\vartheta_2\right) \beta(\varsigma, \sigma)=1$ implies $\varsigma=\sigma$.

Table 1. A thorough examination of a few of the current similarity metrics for T-SFS

$\boldsymbol{\beta}$

Doesn’t Adhere to the Principle $\boldsymbol{\beta}_2$

By Zero Issue Significant Loss of Information

Significant Loss of Information

$\boldsymbol{\beta}_1$

Yes

No

No

$\boldsymbol{\beta}_2$

Yes

No

No

$\boldsymbol{\beta}_3$

Yes

No

No

$\boldsymbol{\beta}_4$

Yes

No

No

$\boldsymbol{\beta}_5$

No

Yes

No

$\boldsymbol{\beta}_6$

Yes

No

No

$\boldsymbol{\beta}_7$

Yes

No

No

$\boldsymbol{\beta}_8$

No

No

Yes

$\boldsymbol{\beta}_9$

Yes

No

No

$\boldsymbol{\beta}_{10}$

Yes

No

No

$\boldsymbol{\beta}_{11}$

Yes

No

No

$\boldsymbol{\beta}_{12}$

No

No

No

$\boldsymbol{\beta}_{13}$

Yes

No

No

$\boldsymbol{\beta}_{14}$

No

No

No

$\boldsymbol{\beta}_m$

Yes

No

No

If $\alpha_{\varsigma}^\eta\left(\mu_\tau\right)=\tau_{\varsigma}^\eta\left(\mu_\tau\right)=\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right) \neq \alpha_\sigma^\eta\left(\mu_\tau\right)=\tau_\sigma^\eta\left(\mu_\tau\right)=\varphi_\sigma^{\prime\eta}\left(\mu_\tau\right)$

i.e. $\varsigma \neq \sigma$ based on Eq. (12), we have

$\begin{gathered}\beta_{12}(\varsigma, \sigma)=\frac{1}{\eta} \sum_{\tau=1}^\eta \omega_\tau \frac{\alpha_{\varsigma}^\eta\left(\mu_\tau\right) \alpha_\sigma^\eta\left(\mu_\tau\right)+\tau_{\varsigma}^\eta\left(\mu_\tau\right) \tau_\sigma^\eta\left(\mu_\tau\right)+\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right) \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)}{\sqrt{\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)^2} \sqrt{\left(\alpha_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)^2}} \\ =\omega_\tau \frac{3 \alpha_{\varsigma}^\eta\left(\mu_\tau\right) \alpha_\sigma^\eta\left(\mu_\tau\right)}{\sqrt{3 \alpha_{\varsigma}^\eta\left(\mu_\tau\right)} \sqrt{3 \alpha_\sigma^\eta\left(\mu_\tau\right)}}=1\end{gathered}$

If $\alpha_{\varsigma}^\eta\left(\mu_\tau\right)=2 \alpha_\sigma^\eta\left(\mu_\tau\right), \tau_{\varsigma}^\eta\left(\mu_\tau\right)=2 \tau_\sigma^\eta\left(\mu_\tau\right) \quad a \eta \varphi \quad \varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)=2 \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)$

i.e., $\varsigma \neq \sigma$ based on Eq. (12), we have

$ \begin{aligned} \beta_{12}(\varsigma, \sigma) & =\frac{1}{\eta} \sum_{\tau=1}^\eta \omega_\tau \frac{\alpha_{\varsigma}^\eta\left(\mu_\tau\right) \alpha_\sigma^\eta\left(\mu_\tau\right)+\tau_{\varsigma}^\eta\left(\mu_\tau\right) \tau_\sigma^\eta\left(\mu_\tau\right)+\varphi_{\varsigma}^{\prime\eta}\left(\mu_\tau\right) \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)}{\sqrt{\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)^2} \sqrt{\left(\alpha_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)^2}} \\ = & \omega_\tau \frac{2\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+2\left(\tau_\sigma^\eta\left(\mu_\tau\right)\right)^2+2\left(\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)^2}{\sqrt{4\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+4\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)^2+4\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)^2} \sqrt{\left(\alpha_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\tau_\sigma^\eta\left(\mu_\tau\right)\right)^2+\left(\varphi_\sigma^{\prime\eta}\left(\mu_\tau\right)\right)^2}}=1 \end{aligned} $

Obviously, the SM $\beta_{12}$ is invalid in the aforementioned cases.

(2) The similar SMs $\beta_5, \beta_7, \beta_8,\beta_{12}$, and $\beta_{14}$ do not satisfy the the axiom $\beta(\varsigma, \sigma)=1$ implies $\varsigma=\sigma$ and in this instance, these SMs give practical users a result that defies logic.

(3) For the SMs $\beta_3, \beta_7, \beta_8, \beta_{11}, \beta_{12}, \beta_{13}$ and $\beta_{14}$, when TSFSs $A=\sigma=(\mu, 0.0,0.0,0.0)$ defined on $X=$ $\{\mu\}$, they do not $\beta_3, \beta_7, \beta_8, \beta_{11}, \beta_{12}, \beta_{13}, \beta_{14}$ satisfy this axiom $\left(\vartheta_2\right) \beta(\varsigma, \sigma)=1$ Iff $\varsigma=\sigma$; and definition 7 is not fill full these operators. These SMs are invalid in this instance because they don't adhere to the axiom.

(4) The articulation structure and the data it contains do not fully settle the SM's ability to detect the proximity of fuzzy. The identification ability becomes more grounded the more data the SM concentrates on. Upon examining Table 1, we discover that the $\mathrm{SM} \delta_1$ solely takes into account the variations in positive, neutral, negative, or refusal degrees between T-SFSs, resulting in a significant loss of information. As an illustration, let $\varsigma=(0.1,0.2,0.1), \sigma=(0.6,0.2,0.1)$ be two T-SFSs. Since $|0.1-0.1|<|0.2-0.2|<\mid 1-0.1-$ $0.2-0.1|<| 1-0.6-0.2-0.1|<| 0.1-0.6 \mid$, hence, the SM among $A$ and $\sigma$ only uses the SM $\beta_1$ to take into account the difference in the positive degree between $\varsigma$ and $\sigma$. In this case, the SM will result in significant data loss in a workable application, making it unable to give more precise results to users in real-world scenarios. Furthermore, we discover that in this instance, the SMs $\beta_2, \beta_4, \beta_5, \beta_6, \beta_{p_3}$ have the same disadvantage.

3.1 A Measure of Parametric Similarity Between Fuzzy T-spherical Sets

In order to overcome the limitations of the current SMs, we expand a parametric SM between T-SFSs in this section, taking into consideration the explanations for the absurd results of the above analysis in Table 1.

In this section, by developing a paired capability, we provide a parametric T-spherical fuzzy SM. The investigation in Table 1 designates that the SMs $\beta_5, \beta_7, \beta_8,, \beta_{12}$, and $\beta_{14}$ have the shortcomings. As a result, the parametric SMs are described in Definition 8.

Definition 8: Let $\varsigma=\left\{\left(\mu_\tau, \alpha_{\varsigma}\left(\mu_\tau\right), \tau_{\varsigma}\left(\mu_\tau\right), \varphi^{\prime}{ }_{\varsigma}\left(\mu_\tau\right)\right) \mid \mu_\tau \in X\right\}$ and $\sigma=\left\{\left(\left(\mu_\tau, \alpha_\sigma\left(\mu_\tau\right), \tau_\sigma\left(\mu_\tau\right), \varphi_\sigma^{\prime}\left(\mu_\tau\right)\right)\right)\right.$ $\left.\mid \mu_\tau \in X\right\}$ be any two be T-SFSs on $X=\left\{\mu_1, \mu_2, \ldots, \mu_\eta\right\}$, then the function $\beta_{\hbar}: T-\operatorname{SFS}(\mu) \times T-\operatorname{SFS}(\mu) \rightarrow[ 0,1]$ is defined by:

$\begin{aligned} \beta_{\hbar}(\varsigma, \sigma)=1-\left[\frac{1}{3 \eta} \sum_{\tau=1}^\eta \Delta_1^p{ }_{\varsigma \sigma}\left(\mu_\tau\right)+\Delta_2^p{ }_{\varsigma \sigma}\left(\mu_\tau\right)+\Delta_3^p \varsigma \sigma\left(\mu_\tau\right)\right]^{\frac{1}{p}} \end{aligned}$
(15)

$\beta_h(\varsigma, \sigma)$ is a similarity measure between $\varsigma$ and $\sigma$, where,

$\begin{aligned} & \Delta_1{ }_{\varsigma \sigma}\left(\mu_\tau\right)=\frac{1}{\hbar_1+1}\left|\hbar_1\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)\right| \hbar_1 \in[ 0,+\infty), \\ & \Delta_2{ }_{\varsigma \sigma}\left(\mu_\tau\right)=\frac{1}{2 \hbar_2+1}\left|\hbar_2\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)\right| \hbar_2 \in[ 0,+\infty), \\ & \Delta_3{ }_{\varsigma \sigma}\left(\mu_\tau\right)=\frac{1}{2 \hbar_3+1}\left|\hbar_3\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)-\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)\right| \hbar_3 \in[ 0,+\infty), \\ & \quad \frac{1}{\hbar_1+1}+\frac{1}{2 \hbar_2+1}+\frac{1}{2 \hbar_3+1} \in(0,1], \text { and } p \text { is several positive integer. }\end{aligned}$

Theorem 1: Let $\varsigma=\left\{\left(\mu, \alpha_{\varsigma}^\eta(\mu), \tau_{\varsigma}^\eta(\mu), \varphi_{\varsigma}^{\prime \eta}(\mu)\right) \mid \mu \in X\right\}$ and $\sigma=\left\{\left(\mu, \alpha_\sigma^\eta(\mu), \tau_\sigma^\eta(\mu), \varphi_\sigma^{\prime \eta}(\mu)\right) \mid \mu \in X\right\}$ be any two T-SFSs on universe $X$, then the SM among $\varsigma$ and $\sigma$ is demarcated as $\beta_{\hbar}(\varsigma, \sigma)$, which placates the succeeding axioms:

$\left(\vartheta_1\right) 0 \leq \beta_{\hbar}(\varsigma, \sigma) \leq 1$;

$\left(\vartheta_2\right) \beta_h(\varsigma, \sigma)=1 \text { Iff } \varsigma=\sigma$;

$\left(\vartheta_3\right) \beta_{\hbar}(\varsigma, \sigma)=\beta_{\hbar}(\sigma, \varsigma)$;

$\left(\vartheta_4\right)$ Let $C$ be any TSFS such that $\varsigma \subseteq \sigma \subseteq C$, then $\beta_h(\varsigma, C) \leq \beta_h(\varsigma, \sigma)$ and $\beta_h(\varsigma, C) \leq \beta_h(\sigma, C)$.

Proof: In instruction to ascertain that Eq. (15) is a SM, we only need to demonstrate that Eq. (15) satisfies axioms $\left(\beta_1\right)-\left(\beta_4\right) \varsigma=\left\{\left(\mu_\tau, \alpha_{\varsigma}\left(\mu_\tau\right), \tau_{\varsigma}\left(\mu_\tau\right), \varphi^{\prime}{ }_{\varsigma}\left(\mu_\tau\right)\right) \mid \mu_\tau \in X\right\}$ and $\sigma=\left\{\left(\left(\mu_\tau, \alpha_\sigma\left(\mu_\tau\right), \tau_\sigma\left(\mu_\tau\right), \varphi^{\prime}{ }_\sigma\left(\mu_\tau\right)\right)\right) \mid \mu_\tau \in X\right\}$ and $C=\left\{\left(\left(\mu_\tau, \alpha_C\left(\mu_\tau\right), \tau_C\left(\mu_\tau\right), \varphi_C^{\prime}\left(\mu_\tau\right)\right)\right) \mid \mu_\tau \in X\right\}$ be any three T-SFSs on $X=\left\{\mu_1, \mu_2, \ldots, \mu_\eta\right\}$.

$\left(\vartheta_1\right)$ We can write the following equations:

$ \begin{aligned} \Delta_1 \varsigma_{\varsigma \sigma}\left(\mu_\tau\right)= & \frac{1}{\hbar_1+1}\left|\hbar_1\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime}\left(\mu_\tau\right)\right)\right| \hbar_1 \in[ 0,+\infty) \\ & =\frac{1}{\hbar_1+1}\left|\left(\hbar_1 \alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)-\left(\hbar_1 \alpha_\sigma^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)-\varphi_\sigma^{\prime}\left(\mu_\tau\right)\right)\right| \end{aligned} $

$ \begin{aligned} \Delta_2 \varsigma_{\varsigma \sigma}\left(\mu_\tau\right)= & \frac{1}{2 \hbar_2+1}\left|\hbar_2\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)\right| \hbar_2 \in[ 0,+\infty) \\ & =\frac{1}{2 \hbar_2+1}\left|\left(\hbar_2 \tau_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)-\left(\hbar_2 \tau_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)-\varphi_\sigma^{\prime}\left(\mu_\tau\right)\right)\right| \end{aligned} $

$ \begin{aligned} \Delta_3 \varsigma_{\varsigma \sigma}\left(\mu_\tau\right)= & \frac{1}{2 \hbar_3+1}\left|\hbar_3\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)-\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)\right| \hbar_3 \in[ 0,+\infty) \\ & =\frac{1}{2 \hbar_3+1}\left|\left(\hbar_3 \varphi_{\varsigma}^{\prime \prime}\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)-\left(\hbar_3 \varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)\right| \end{aligned} $

By $\quad \alpha_{\varsigma}^\eta\left(\mu_\tau\right), \tau_{\varsigma}^\eta\left(\mu_\tau\right), \varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right), \alpha_\sigma^\eta\left(\mu_\tau\right), \tau_\sigma^\eta\left(\mu_\tau\right), \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right) \in[ 0,1] \quad$ and $\quad \alpha_{\varsigma}^\eta\left(\mu_\tau\right)+\tau_{\varsigma}^\eta\left(\mu_\tau\right)+\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right) \leq$ $1, \alpha_\sigma^\eta\left(\mu_\tau\right)+\tau_\sigma^\eta\left(\mu_\tau\right)+\varphi^{\prime \eta}\left(\mu_\tau\right) \leq 1$

We have

$ \begin{gathered} -1 \leq \hbar_1 \alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right) \leq \hbar_1 \\ -\hbar_1 \leq-\left(\hbar_1 \alpha_\sigma^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right) \leq 1 \end{gathered} $

$0 \leq\left|\left(\hbar_1 \alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)-\left(\hbar_1 \alpha_\sigma^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)\right| \leq \hbar_1+1$

i.e., $0 \leq \Delta_1{ }_{\varsigma \sigma}\left(\mu_\tau\right) \leq 1$,

then

$ \begin{gathered} -1 \leq \hbar_2 \tau_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)+\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right) \leq 1 \vee \hbar_2 \\ -\left(1 \vee \hbar_2\right) \leq-\left(\hbar_2 \tau_\sigma^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)+\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right) \leq 1 \end{gathered} $

Similarly, we get the following inequalities:

$ \begin{gathered} -1 \leq \hbar_3 \varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)+\tau_{\varsigma}^\eta\left(\mu_\tau\right) \leq 1 \vee \hbar_3 \\ -\left(1 \vee \hbar_3\right) \leq-\left(\hbar_3 \varphi_\sigma^{\prime \prime \eta}\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)+\tau_\sigma^\eta\left(\mu_\tau\right)\right) \leq 1 \end{gathered} $

Then we obtain:

$ \begin{aligned} & 0 \leq\left|\left(\hbar_2 \tau_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)+\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)-\left(\hbar_2 \tau_\sigma^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)+\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)\right| \leq 2 \vee \hbar_2 \\ & 0 \leq\left|\left(\hbar_3 \varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)+\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)-\left(\hbar_3 \varphi_\sigma^{\prime\eta}\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)+\tau_\sigma^\eta\left(\mu_\tau\right)\right)\right| \leq 2 \vee \hbar_3 \end{aligned} $

It means that:

$ \begin{aligned} 0 \leq \Delta_2{ }_{\varsigma \sigma}\left(\mu_\tau\right)= & \frac{1}{2 \hbar_2+1}\left|\left(\hbar_2 \tau_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)+\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)-\left(\hbar_2 \tau_\sigma^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)+\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)\right| \\ & \leq \frac{1}{\hbar_2+1} \vee \frac{1}{2} \leq 1 \\ 0 \leq \Delta_3{ }_{\varsigma \sigma}\left(\mu_\tau\right)= & \frac{1}{2 \hbar_3+1}\left|\left(\hbar_3 \varphi_{\varsigma}^{\prime}\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)+\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)-\left(\hbar_3 \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)+\tau_\sigma^\eta\left(\mu_\tau\right)\right)\right| \\ & \leq \frac{1}{\hbar_3+1} \vee \frac{1}{2} \leq 1 \end{aligned} $

Finally, we have:

$ 0 \leq 1-\left[\frac{1}{3 \eta} \sum_{\tau=1}^\eta \Delta_1^p{ }_{\varsigma \sigma}\left(\mu_\tau\right)+ \Delta_2^p{ }_{\varsigma \sigma}\left(\mu_\tau\right)+\Delta_3^p{ }_{\varsigma \sigma}\left(\mu_\tau\right)\right]^{\frac{1}{p}} \leq 1 $

Therefore,

$ \left(\beta_1\right) 0 \leq \beta_{\hbar}(\varsigma, \sigma) \leq 1 $

$\left(\vartheta_2\right)$ If $\varsigma=\sigma$ then $\alpha_{\varsigma}^\eta\left(\mu_\tau\right)=\alpha_\sigma^\eta\left(\mu_\tau\right), \tau_{\varsigma}^\eta\left(\mu_\tau\right)=\tau_\sigma^\eta\left(\mu_\tau\right)$ and $\varphi_{\varsigma}^{\prime}\left(\mu_\tau\right)=\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)$ Therefore, $\Delta_{1 \varsigma \sigma}\left(\mu_\tau\right)= 0$, $\Delta_{2 \varsigma \sigma}\left(\mu_\tau\right)=0 \quad a \eta \varphi \Delta_{3 \varsigma \sigma}\left(\mu_\tau\right)=0$

i.e., $\quad \beta_{\hbar}(\varsigma, \sigma)=1$

If $\beta_{\hbar}(\varsigma, \sigma)=1$,

then

$ \Delta_{1 \varsigma \sigma}\left(\mu_\tau\right)=\frac{1}{\hbar_1+1}\left|\hbar_1\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)\right|=0 $

$ \Delta_2 \varsigma \sigma\left(\mu_\tau\right)=\frac{1}{2 \hbar_2+1}\left|\hbar_2\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)\right|=0 $

$ \Delta_3{ }_{\varsigma}\left(\mu_\tau\right)=\frac{1}{2 \hbar_3+1}\left|\hbar_3\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)-\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)\right|=0 $

By definition, absolute value gives us:

$ \begin{aligned} & \hbar_1\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\varphi_{\varsigma}^{\prime}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)=0 \\ & \hbar_2\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)=0 \\ & \hbar_3\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \prime}\left(\mu_\tau\right)\right)-\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)=0 \end{aligned} $

i.e.,

$ \left(\begin{array}{ccc} \hbar_1 & -1 & -1 \\ -1 & \hbar_2 & 1 \\ -1 & 1 & \hbar_3 \end{array}\right)\left(\begin{array}{c} \alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right) \\ \tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right) \\ \varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right) \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right) $

Since $\frac{1}{\hbar_1+1}+\frac{1}{2 \hbar_2+1}+\frac{1}{2 \hbar_3+1} \in(0,1]$ then $2 \leq \hbar_1 \hbar_2 \hbar_3-\left(\hbar_1+\hbar_3+\hbar_3\right)$.

By using the matrix determinant definition, we can obtain:

$ \left|\begin{array}{ccc} \hbar_1 & -1 & -1 \\ -1 & \hbar_2 & 1 \\ -1 & 1 & \hbar_3 \end{array}\right|=\hbar_1 \hbar_2 \hbar_3+2-\left(\hbar_1+\hbar_3+\hbar_3\right) \geq 4 $

Therefore, we have

$ \left(\begin{array}{c} \alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right) \\ \tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right) \\ \varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right) \end{array}\right)=\left(\begin{array}{ccc} \hbar_1 & -1 & -1 \\ -1 & \hbar_2 & 1 \\ -1 & 1 & \hbar_3 \end{array}\right)^{-1}\left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right)=\left(\begin{array}{l} 0 \\ 0 \\ 0 \end{array}\right) $

It means that $\alpha_{\varsigma}^\eta\left(\mu_\tau\right)=\alpha_\sigma^\eta\left(\mu_\tau\right), \tau_{\varsigma}^\eta\left(\mu_\tau\right)=\tau_\sigma^\eta\left(\mu_\tau\right)$ and $\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)=\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)$ then $\varsigma=\sigma$

$\left(\vartheta_3\right)$ From the definition of absolute value, the following equations can be obtained:

$ \begin{gathered} \Delta_1{\varsigma \sigma}\left(\mu_\tau\right)=\frac{1}{\hbar_1+1}\left|\hbar_1\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)\right| \\ =\frac{1}{\hbar_1+1}\left|(-1)\left[\hbar_1\left(\alpha_\sigma^\eta\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)\right)-\left(\tau_\sigma^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)-\left(\varphi_\sigma^{\prime}\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)\right]\right| \\ =\frac{1}{\hbar_1+1}\left|\hbar_1\left(\alpha_\sigma^\eta\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)\right)-\left(\tau_\sigma^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)-\left(\varphi_\sigma^{\prime\eta}\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)\right| \\ =\Delta_{1 \sigma \varsigma}\left(\mu_\tau\right) \end{gathered} $

$ \begin{gathered} \Delta_2{\varsigma \sigma}\left(\mu_\tau\right)=\frac{1}{2 \hbar_2+1}\left|\hbar_2\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)-\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)\right| \\ =\frac{1}{2 \hbar_2+1}\left|(-1)\left[\hbar_2\left(\tau_\sigma^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)-\left(\alpha_\sigma^\eta\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)\right)+\left(\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)-\varphi_\zeta^{\prime \eta}\left(\mu_\tau\right)\right)\right]\right| \\ =\frac{1}{2 \hbar_2+1}\left|\hbar_2\left(\tau_\sigma^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)-\left(\alpha_\sigma^\eta\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)\right)+\left(\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)\right| \\ =\Delta_{2 \sigma \varsigma}\left(\mu_\tau\right) \end{gathered} $

$ \begin{gathered} \Delta_3{\varsigma \sigma}\left(\mu_\tau\right)=\frac{1}{2 \hbar_3+1}\left|\hbar_3\left(\varphi_{\varsigma}^{\prime}\left(\mu_\tau\right)-\varphi_\sigma^{\prime }\left(\mu_\tau\right)\right)-\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)\right| \\ =\frac{1}{2 \hbar_3+1}\left|(-1)\left[\mid \hbar_3\left(\varphi_\sigma^{\prime}\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime \prime}\left(\mu_\tau\right)\right)-\left(\alpha_\sigma^\eta\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)\right)+\left(\tau_\sigma^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)\right]\right| \\ =\frac{1}{2 \hbar_3+1}\left|\hbar_3\left(\varphi_\sigma^{\prime \prime}\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)-\left(\alpha_\sigma^\eta\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)\right)+\left(\tau_\sigma^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)\right| \\ =\Delta_{3 \sigma \varsigma}\left(\mu_\tau\right) \end{gathered} $

$ \beta_{\hbar}(\varsigma, \sigma)=\beta_{\hbar}(\sigma, \varsigma) $

$\left(\vartheta_4\right)$ Therefore $\varsigma \subseteq \sigma \subseteq C$ then $\alpha_{\varsigma}^\eta\left(\mu_\tau\right) \leq \alpha_\sigma^\eta\left(\mu_\tau\right) \leq \alpha_C^\eta\left(\mu_\tau\right), \tau_C^\eta\left(\mu_\tau\right) \leq \tau_\sigma^\eta\left(\mu_\tau\right) \leq \tau_{\varsigma}^\eta\left(\mu_\tau\right), \varphi_C^{\prime \eta}\left(\mu_\tau\right) \leq$ $\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right) \leq \varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)$

Thus, we can get

$ \begin{aligned} & \hbar_1\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime\eta}\left(\mu_\tau\right)\right) \leq \hbar_1\left(\alpha_\sigma^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right) \leq \hbar_1\left(\alpha_C^\eta\left(\mu_\tau\right)-\tau_c^\eta\left(\mu_\tau\right)-\varphi_C^{\prime \eta}\left(\mu_\tau\right)\right) \\ & \hbar_2\left(\tau_c^\eta\left(\mu_\tau\right)-\alpha_C^\eta\left(\mu_\tau\right)-\varphi_c^{\prime \eta}\left(\mu_\tau\right)\right) \leq \hbar_2\left(\tau_\sigma^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right) \leq \hbar_2\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right) \\ & \hbar_3\left(\varphi_c^{\prime \prime \eta}\left(\mu_\tau\right)-\alpha_C^\eta\left(\mu_\tau\right)-\tau_C^\eta\left(\mu_\tau\right)\right) \leq \hbar_3\left(\varphi_\sigma^{\prime \prime \eta}\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right) \leq \hbar_3\left(\varphi_{\varsigma}^{\prime\eta}\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right) \end{aligned} $

Using the inequality property, we can get:

$ \begin{aligned} & \left|\hbar_1\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)-\hbar_1\left(\alpha_\sigma^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)\right| \\ \leq & \left|\hbar_1\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)-\hbar_1\left(\alpha_c^\eta\left(\mu_\tau\right)-\tau_c^\eta\left(\mu_\tau\right)-\varphi_C^{\prime \eta}\left(\mu_\tau\right)\right)\right| \end{aligned} $

$ \begin{aligned} & \left|\hbar_2\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)-\hbar_2\left(\tau_\sigma^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)\right| \\ \leq & \left|\hbar_2\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)\right)-\hbar_2\left(\tau_c^\eta\left(\mu_\tau\right)-\alpha_c^\eta\left(\mu_\tau\right)-\varphi_c^{\prime \eta}\left(\mu_\tau\right)\right)\right| \end{aligned} $

$ \begin{aligned} & \left|\hbar_3\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)-\hbar_3\left(\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)\right| \\ \leq & \left|\hbar_3\left(\varphi_{\varsigma}^{\prime}\left(\mu_\tau\right)-\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_{\varsigma}^\eta\left(\mu_\tau\right)\right)-\hbar_3\left(\varphi_c^{\prime \eta}\left(\mu_\tau\right)-\alpha_C^\eta\left(\mu_\tau\right)-\tau_C^\eta\left(\mu_\tau\right)\right)\right| \end{aligned} $

$ \Delta_2{ }_{\varsigma \sigma}\left(\mu_\tau\right) \leq \Delta_1{ }_{\varsigma c}\left(\mu_\tau\right), \Delta_2{ }_{\varsigma \sigma}\left(\mu_\tau\right) \leq \Delta_2{ }_{\varsigma c}\left(\mu_\tau\right), \Delta_3{ }_{\varsigma \sigma}\left(\mu_\tau\right) \leq \Delta_3{ }_{\varsigma c}\left(\mu_\tau\right) $

Consequently, we have

$ 1-\left[\frac{1}{3 \eta} \sum_{\tau=1}^\eta \Delta_{1 \varsigma c}^p\left(\mu_\tau\right)+\Delta_2^p{ }_{\varsigma c}\left(\mu_\tau\right)+\Delta_3^p{ }_{\varsigma c}\left(\mu_\tau\right)\right]^{\frac{1}{p}}=1-\left[\frac{1}{3 \eta} \sum_{\tau=1}^\eta \Delta_1^p{ }_{\varsigma \sigma}\left(\mu_\tau\right)+\Delta_2^p{ }_{\varsigma \sigma}\left(\mu_\tau\right)+\Delta_3^p{ }_{\varsigma \sigma}\left(\mu_\tau\right)\right]^{\frac{1}{p}} $

It resources that $\beta_{\hbar}(\varsigma, C) \leq \beta_{\hbar}(\varsigma, \sigma)$.

Similarity, we have $\beta_{\hbar}(\varsigma, C) \leq \beta_{\hbar}(\sigma, C)$

(1) When $\hbar_1=0, \hbar_2=\hbar_3=+\infty$, Eq. (16) can be written as:

$\begin{aligned} \beta_1(\varsigma, \sigma)=1-\left[\frac{1}{3 \eta} \sum_{\tau=1}^\eta\binom{\left|\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)+\left(\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right)-\varphi_\sigma^{\prime \eta}\left(\mu_\tau\right)\right)\right|^{{p}}+}{\frac{\left|\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)\right| {p}}{2^{{p}}}+\frac{\left|\left(\varphi_{\varsigma}^\eta\left(\mu_\tau\right)-\varphi_\sigma^{\prime\eta}\left(\mu_\tau\right)\right)\right|{p}}{2^{{p}}}}\right]^{\frac{1}{p}} \end{aligned}$
(16)

(2) When $\hbar_1=\hbar_2=+ \infty \hbar_3=0$, Eq. (17) can be written as:

$\begin{aligned} \beta_2(\varsigma, \sigma)=1-\left[\frac{1}{3 \eta} \sum_{\tau=1}^\eta\binom{\left|\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)\right|^p+}{\frac{\left|\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)\right|^p}{2^p}+\frac{\left|\left(\left(\tau_{\varsigma}^\eta\left(\mu_\tau\right)-\tau_\sigma^\eta\left(\mu_\tau\right)\right)\right)-\left(\alpha_{\varsigma}^\eta\left(\mu_\tau\right)-\alpha_\sigma^\eta\left(\mu_\tau\right)\right)\right|^p}{2^p}} \right]^{\frac{1}{p}} \end{aligned}$
(17)

Theorem 2: For any two T-SFSs $\varsigma=\left\{\left(\mu_\tau, \alpha_{\varsigma}\left(\mu_\tau\right), \tau_{\varsigma}\left(\mu_\tau\right), \varphi_{\varsigma}^{\prime}\left(\mu_\tau\right)\right) \mid \mu_\tau \in X\right\} \quad$ and

$\quad \sigma=\left\{\left(\left(\mu_\tau, \alpha_\sigma\left(\mu_\tau\right), \tau_\sigma\left(\mu_\tau\right), \varphi^{\prime}{ }_\sigma\left(\mu_\tau\right)\right)\right) \mid \mu_\tau \in X\right\}$

on $X=\left\{\mu_1, \mu_2, \ldots, \mu_\eta\right\} \omega_\tau \in[ 0,1]$ and $\sum_{\tau=1}^\eta \omega_\tau=1$ the function $\beta_\omega: T-\operatorname{SFS}(\mu) \times T-\operatorname{SFS}(\mu) \rightarrow[ 0,1]$ is defined by

$ \beta_\omega(\varsigma, \sigma)=1-\left[\frac{1}{3 \eta} \sum_{\tau=1}^\eta \omega_\tau\left(\Delta_1^p{ }_{\varsigma \sigma}\left(\mu_\tau\right)+\Delta_2^p{ }_{\varsigma \sigma}\left(\mu_\tau\right)+\Delta_3^p{ }_{\varsigma \sigma}\left(\mu_\tau\right)\right)\right]^{\frac{1}{p}} $

$\beta_\omega(\varsigma, \sigma)$ is a weighted SM between $\varsigma$ and $\sigma$.

Proof: Theorem 2 and the proof are comparable.

To further clarify, an example is added in the following.

Example 1: Let $\varsigma=(\mu, 0.1,0.3,0.4), \sigma=(\mu, 0.5,0.2,0.1) \quad$ and $\mathrm{C}=(\mu, 0.5,0.0,0.0)$ are three different T-SFVs on $\mathrm{X}=\{\mu\}$. $\mathrm{A}$ is more similar to $\mathrm{B}$ than $C$ to say $\beta(\varsigma, \sigma)>\beta(\varsigma, C)$. To demonstrate this view's accuracy for our suggested SM $\beta_{\hbar}$, and the existing ones in particular $\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6 \beta_7, \beta_9, \beta_{10} \beta_{11} \beta_{12}, \beta_{13}, \beta_{14}, \beta_{\hbar}$. Table 2 displays the SMs' obtained values.

Table 2. The SMs' values on T-SFVs $\varsigma, \sigma$, and $C$

$\boldsymbol{\beta}$

$\boldsymbol{\beta}(\boldsymbol{\varsigma}, \boldsymbol{B})$

$\boldsymbol{\beta}(\boldsymbol{\varsigma}, \boldsymbol{C})$

Relation

$\boldsymbol{\beta}_1$

0.9587

0.9587

$\beta$($\varsigma, \sigma$)=$\beta$($C, \sigma$)

$\boldsymbol{\beta}_2$

0.9657

0.9642

$\beta$($\varsigma, \sigma$)$>$$\beta$($C, \sigma$)

$\boldsymbol{\beta}_3$

0.9622

0.9614

$\beta$$\varsigma, \sigma$)$>$$\beta$($C, \sigma$)

$\boldsymbol{\beta}_4$

0.9587

0.9587

$\beta$($\varsigma, \sigma$)=$\beta$($C, \sigma$)

$\boldsymbol{\beta}_5$

0.7402

0.7402

$\beta$($\varsigma, \sigma$)=$\beta$($C, \sigma$)

$\boldsymbol{\beta}_6$

0.7794

0.7794

$\beta$($\varsigma, \sigma$)=$\beta$($C, \sigma$)

$\boldsymbol{\beta}_7$

0.0154

0.0154

$\beta$($\varsigma, \sigma$)=$\beta$($C, \sigma$)

$\boldsymbol{\beta}_8$

1.000

1.000

$\beta$($\varsigma, \sigma$)=$\beta$($C, \sigma$)

$\boldsymbol{\beta}_9$

0.3009

0.2996

$\beta$($\varsigma, \sigma$)$>$$\beta$($C, \sigma$)

$\boldsymbol{\beta}_{10}$

0.9026

0.8988

$\beta$($\varsigma, \sigma$)$>$$\beta$($C, \sigma$)

$\boldsymbol{\beta}_{11}$

0.0155

0.0048

$\beta$($\varsigma, \sigma$)$>$$\beta$($C, \sigma$

$\boldsymbol{\beta}_{12}$

0.0078

0.0024

$\beta$($\varsigma, \sigma$)$>$$\beta$($C, \sigma$

$\boldsymbol{\beta}_{13}$

0.0086

0.0027

$\beta$($\varsigma, \sigma$)$>$$\beta$($C, \sigma$)

$\boldsymbol{\beta}_{14}$

0.0043

0.0013

$\beta$($\varsigma, \sigma$)$>$$\beta$($C, \sigma$

$\boldsymbol{\beta}_m$

0.6000

0.4500

$\beta$($\varsigma, \sigma$)$>$$\beta$($C, \sigma$)

4. Using the Suggested Similarity Metrics

This section applies the suggested SMs to MADM problems, demonstrating that the expected SM makes sense and is consistent with human cognition.

Let $X=\left\{\mu_1, \mu_2, \ldots \mu_{\hbar}\right\} \quad$ be $\quad$ a set of attributes, the $\eta$ alternatives

$ \varsigma_\tau=\left(\varsigma_{\tau j}\right)=\left\{\left(\mu_j, \alpha_{\varsigma \tau}\left(\mu_j\right), \tau_{\varsigma \tau}\left(\mu_j\right), \varphi^{\prime}{ }_{\varsigma \tau}\left(\mu_j\right)\right)\right\} \mid \mu_j \in X, $

where, $\mu_j, \alpha_{\varsigma}^\eta\left(\mu_\tau\right), \tau_{\varsigma}^\eta\left(\mu_\tau\right), \varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right), \alpha_\sigma^\eta\left(\mu_\tau\right), \tau_\sigma^\eta\left(\mu_\tau\right), \varphi_\sigma^{\prime \eta}\left(\mu_\tau\right) \in$ $[ 0,1]$ and $\alpha_{\varsigma}^\eta\left(\mu_\tau\right)+\tau_{\varsigma}^\eta\left(\mu_\tau\right)+\varphi_{\varsigma}^{\prime \eta}\left(\mu_\tau\right) \leq 1, \alpha_{\varsigma}^\eta\left(\mu_\tau\right)$ is a positive degree that is used to determine whether the alternative $\varsigma_\tau$ satisfies the $\mu_j(\tau=\{1,2, \ldots \eta\}, j=\{1,2, \ldots \hbar\}), \tau_{\varsigma}^\eta\left(\mu_\tau\right)$.

A neutral degree, $\tau_{\varsigma}^\eta\left(\mu_\tau\right)$, is used to ensure that $\varsigma_\tau$ does not satisfy the $\mu_j$. A negative degree $\varphi^{\prime }\left(\mu_\tau\right)$ is used to ensure that $\varsigma_\tau$ does not satisfy the $\mu_j$. The best course of action is selected through decision-making.

Step 1 Standardize the options for making decisions.

There are two categories of multi-attribute decision-making in this process: amount type and interest type.

The formula used in the decision-making process can be used to convert the amount type into the interest type.

$ \varsigma_{\tau j}^{\prime}=\left\{\begin{array}{c} \varsigma_{\tau j} \text { for benefit attribute } \mu_j \\ \varsigma_{\tau j}^c \text { for cost attribute } \mu_j \end{array}\right. $

$\varsigma_{\tau j}^c=\left(\alpha_{\varsigma \tau}\left(\mu_j\right), \tau_{\varsigma \tau}\left(\mu_j\right), \varphi^{\prime}{ }_{\varsigma \tau}\left(\mu_j\right)\right), \tau=\{1,2, \ldots \eta\}, j=\{1,2 \ldots \hbar\}$. The above formula is based on the alternative $_\tau=\left\{\varsigma_{\tau j}^{\prime}\right\}$.

Step 2 The SM $\beta=\left(\varsigma_\tau, \varsigma\right)(\tau=1,2,3, \ldots, \eta)$ is calculated, where $\varsigma=\{(0.11,0.21,0.32),(0.11,0.21,0.32),\\(0.11,0.21,0.32)\}$ is a standard that the T-SFV, the decision-maker, provides. With the aid of the suggested SM, we determine the similarity values.

Step 3 The maximum one is chosen in $\beta=\left(D o c_{\tau 0}, \varsigma\right)$ from $\beta=\left(\varsigma_\tau, \varsigma\right) \tau=(c=1,2,3, \ldots \eta)$)$\tau.e$

$\beta=\left(D o c_{\tau 0}, \varsigma\right)=\underset{1 \leq \tau \leq \eta}{\mathrm{ha \mu}}\left\{\beta\left(D o c_\tau, \varsigma\right)\right\}$. The maximum SMs alternative $D o c_{\tau 0}$ then follows the maximum principle.

For the similarity measure, see the example below $\beta_{\hbar}, p=3, \hbar_1=\hbar_2=\hbar_3=3$

4.1 Example

In the current digital era, internet skills are crucial. These include the capacity to use online platforms, critically assess information, and effectively communicate. Online guides and discussion boards, as well as official educational programs provided by institutions and organizations, are good places to start when trying to hone these abilities. Learning how to use the Internet effectively can help people in many ways. They can connect with different communities, access a plethora of information, and use online resources for personal growth, career advancement, and education. Accepting the potential of the Internet enables people to prosper in a world that is becoming more interconnected. There are three alternative $\varsigma_1$ Web Savvy, $\varsigma_2$ Digital Literacy, $\varsigma_3$ Cyber Skills, with three different attributes, $x_1$ Information Fluency, $x_2$ Online Communication, $x_3$ Cyber security, labelled the T-SFSs as presented in Table 3. The weights of $\mu_j(1 \leq j \leq 3)$ are $(0.5,0.3,0.2)$.

Table 3. Three options, each with three characteristics

$\boldsymbol{x_1}$

$\boldsymbol{x_2}$

$\boldsymbol{x_3}$

$\boldsymbol{\varsigma}_1$

(0.12,0.13,0.16)

(0.16,0.14,0.28)

(0.23,0.12,0.11)

$\boldsymbol{\varsigma}_2$

(0.15,0.14,0.11)

(0.21,0.16,0.20)

(0.32,0.0,0.11)

$\boldsymbol{\varsigma}_3$

(0.20,0.08,0.07)

(0.21,0.12,0.11)

(0.18,0.0,0.07)

Table 4 below gives the values of the SMs of $\varsigma_1, \varsigma_2$, and $\varsigma_3$ by $\varsigma$.

Based on the attributes, Table 4 displays the SMs values for the Internet skills. Based on the values derived from the SMs, we can now determine the ranking of the alternatives. Table 5 below displays the Internet skills decision-ranking.

The alternative $\varsigma_1$ is obtained by using the $\operatorname{SMs} \beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6, \beta_7, \beta_9, \beta_{10}, \beta_{11}, \beta_{12}, \beta_{13}, \beta_{14}$ and $\beta_{\hbar}$. After it is cleared from Table 5. On the other hand, the $\beta_8$ yields the alternative $\varsigma_1$. Figure 1 provides the following geometric representation of the order of the Internet skills and in Doc formula $\beta_8$ not given the answer.

It is cleared from Figure 1, the alternative $\varsigma_1$ is obtained by using the SMs $\beta_1, \beta_2, \beta_3, \beta_4, \beta_5, \beta_6, \beta_7, \beta_9, \beta_{10}, \beta_{11}, \beta_{12},\\ \beta_{13}, \beta_{14}$ and $\beta_h$. However, the alternative $\varsigma_1$ is obtained by the $\beta_8$.

Table 4. Values of the example's similarity metrics and decision outcomes 2

$\boldsymbol{\beta}$

$\boldsymbol{\beta}\left(\boldsymbol{\varsigma}_1, \boldsymbol{\varsigma}\right)$

$\boldsymbol{\beta}\left(\boldsymbol{\varsigma}_2, \boldsymbol{\varsigma}\right)$

$\boldsymbol{\beta}\left(\boldsymbol{\varsigma}_3, \boldsymbol{\varsigma}\right)$

$\boldsymbol{\beta}_1$

0.9693

0.9638

0.9594

$\boldsymbol{\beta}_2$

0.9823

0.9750

0.9765

$\boldsymbol{\beta}_3$

0.7192

0.6725

0.6793

$\boldsymbol{\beta}_4$

0.9764

0.9708

0.9679

$\boldsymbol{\beta}_5$

0.0460

0.0568

0.0622

$\boldsymbol{\beta}_6$

0.9338

0.9194

0.9122

$\boldsymbol{\beta}_7$

0.2732

0.1388

0.0548

$\boldsymbol{\beta}_8$

0.7035

0.1687

0.9439

$\boldsymbol{\beta}_9$

0.9823

0.9752

0.9766

$\boldsymbol{\beta}_{10}$

0.9872

0.9807

0.9765

$\boldsymbol{\beta}_{11}$

0.6567

0.3698

0.0961

$\boldsymbol{\beta}_{12}$

0.2554

0.1413

0.0335

$\boldsymbol{\beta}_{13}$

0.2640

0.1089

0.0234

$\boldsymbol{\beta}_{14}$

0.0870

0.0356

0.0082

$\boldsymbol{\beta}_m$

0.9882

0.9833

0.9843

Table 5. Using the values of the SMs found in table to rank the Internet skills

Ranking

The best alternative

Doc

$\boldsymbol{\beta}_1$

$\varsigma_1>\varsigma_2>\varsigma_3$

$\varsigma_1$

-0.1352

$\boldsymbol{\beta}_2$

$\varsigma_1>\varsigma_3>\varsigma_2$

$\varsigma_1$

-0.03

$\boldsymbol{\beta}_3$

$\varsigma_1>\varsigma_3>\varsigma_2$

$\varsigma_1$

0.248

$\boldsymbol{\beta}_4$

$\varsigma_1>\varsigma_2>\varsigma_3$

$\varsigma_1$

-0.0656

$\boldsymbol{\beta}_5$

$\varsigma_3>\varsigma_2>\varsigma_1$

$\varsigma_3$

0.095

$\boldsymbol{\beta}_6$

$\varsigma_1>\varsigma_2>\varsigma_3$

$\varsigma_1$

-0.0843

$\boldsymbol{\beta}_7$

$\varsigma_1>\varsigma_2>\varsigma_3$

$\varsigma_1$

-0.2639

$\boldsymbol{\beta}_8$

$\varsigma_3>\varsigma_1>\varsigma_2$

$\varsigma_3$

0

$\boldsymbol{\beta}_9$

$\varsigma_1>\varsigma_3>\varsigma_2$

$\varsigma_1$

-0.0416

$\boldsymbol{\beta}_{10}$

$\varsigma_1>\varsigma_3>\varsigma_2$

$\varsigma_1$

-0.038

$\boldsymbol{\beta}_{11}$

$\varsigma_1>\varsigma_2>\varsigma_3$

$\varsigma_1$

0.1057

$\boldsymbol{\beta}_{12}$

$\varsigma_1>\varsigma_2>\varsigma_3$

$\varsigma_1$

0.0149

$\boldsymbol{\beta}_{13}$

$\varsigma_1>\varsigma_2>\varsigma_3$

$\varsigma_1$

-0.9751

$\boldsymbol{\beta}_{14}$

$\varsigma_1>\varsigma_2>\varsigma_3$

$\varsigma_1$

-0.4779

$\boldsymbol{\beta}_m$

$\varsigma_1>\varsigma_3>\varsigma_2$

$\varsigma_1$

-0.0189

Figure 1. Table 5 lists the Internet skills in order of acquisition from the SMs
4.2 Example

In this example, a problem with the MADM is solved. The Internet has completely changed how people can obtain information, allowing them to easily research a wide range of topics on almost any subject imaginable. People can perform academic research, pursue self-directed learning, and rapidly find answers to their questions using search engines, online libraries, and educational websites. The Internet also makes the world more connected, which promotes cooperation and communication between people in different places. The Internet allows people to connect with like-minded people worldwide, follow their passions, and broaden their horizons, whether for personal enrichment, professional development, or academic research.

$\boldsymbol{\varsigma}_{\mathbf{1}}$ Online Advantage

$\boldsymbol{\varsigma}_{\mathbf{2}}$ Digital Asset

$\boldsymbol{\varsigma}_{\mathbf{3}}$ Cyber Advantage

$\boldsymbol{\varsigma}_{\mathbf{4}}$ Virtual Benefit

$\boldsymbol{\varsigma}_{\mathbf{5}}$ Web Advantage

$\boldsymbol{\varsigma}_{\mathbf{6}}$ Online Benefit

Six candidates will be evaluated based on these characteristics. Take into consideration $\varsigma=$ $\{(0.11,0.21,0.32),\\(0.11,0.21,0.32),(0.11,0.21,0.32)\}$, where the T-SFV is used as the standard. The option that most closely resembles $S$ is regarded as the ideal worker. Consider some attributes of internet benefit i.e., Global Access $\left(x_1\right)$, Information Accessibility $\left(x_2\right)$ and Connectivity $\left(x_3\right)$. Weight vector $\omega=(0.2,0.3,0.5)$ is what it is. Following an initial evaluation, the T-SFVs are assigned to the employees based on the characteristics listed in Table 6.

Table 6. In this case, the evaluation outcomes of six faculty candidate

$\boldsymbol{x_1}$

$\boldsymbol{x_2}$

$\boldsymbol{x_3}$

$\boldsymbol{\varsigma}_1$

(0.22,0.31,0.40)

(0.53,0.03,0.21)

(0.11,0.31,0.07)

$\boldsymbol{\varsigma}_2$

(0.0,0.30,0.54)

(0.32,0.34,0.20)

(0.36,0.43,0.20)

$\boldsymbol{\varsigma}_3$

(0.41,0.34,0.15)

(0.12,0.04,0.32)

(0.12,0.02,0.43)

$\boldsymbol{\varsigma}_4$

(0.23,0.55,0.20)

(0.55,0.34,0.10)

(0.31,0.31,0.1)

$\boldsymbol{\varsigma}_5$

(0.33,0.21,0.23)

(0.21,0.43,0.21)

(0.23,0.33,0.0)

$\boldsymbol{\varsigma}_6$

(0.27,0.12,0.16)

(0.22,0.32,0.28)

(0.33,0.0,0.12)

Next, using the existing and proposed SMs, each candidate's similarity to the standard is assessed. The outcomes are summarized as follows in Table 7.

Table 7. In this example, similarity metrics and decision outcomes

$\boldsymbol{\beta}$

$\boldsymbol{\beta}\left(\boldsymbol{\varsigma}_1, \boldsymbol{\varsigma}\right)$

$\boldsymbol{\beta}\left(\boldsymbol{\varsigma}_2, \boldsymbol{\varsigma}\right)$

$\boldsymbol{\beta}\left(\boldsymbol{\varsigma}_3, \boldsymbol{\varsigma}\right)$

$\boldsymbol{\beta}\left(\boldsymbol{\varsigma}_4, \boldsymbol{\varsigma}\right)$

$\boldsymbol{\beta}\left(\boldsymbol{\varsigma}_5, \boldsymbol{\varsigma}\right)$

$\boldsymbol{\beta}\left(\boldsymbol{\varsigma}_6, \boldsymbol{\varsigma}\right)$

$\boldsymbol{\beta}_1$

0.9197

0.8935

0.9487

0.8627

0.9499

0.9636

$\boldsymbol{\beta}_2$

0.9609

0.9717

0.9811

0.9453

0.9815

0.9779

$\boldsymbol{\beta}_3$

0.5951

0.6623

0.7931

0.4979

0.7168

0.6932

$\boldsymbol{\beta}_4$

0.9404

0.9268

0.9619

0.8926

0.9650

0.9753

$\boldsymbol{\beta}_5$

0.1268

0.1380

0.0781

0.2055

0.0872

0.0562

$\boldsymbol{\beta}_6$

0.8256

0.8154

0.8901

0.7386

0.8790

0.9201

$\boldsymbol{\beta}_7$

0.2140

0.1735

0.4189

0.0874

0.1954

0.1941

$\boldsymbol{\beta}_8$

0.0840

0.9488

0.6437

0.6073

0.4668

0.3395

$\boldsymbol{\beta}_9$

0.9527

0.9382

0.9682

0.9194

0.9621

0.9713

$\boldsymbol{\beta}_{10}$

0.9292

0.9405

0.9678

0.8990

0.9641

0.9802

$\boldsymbol{\beta}_{11}$

0.3508

0.4088

0.7103

0.1163

0.1705

0.2733

$\boldsymbol{\beta}_{12}$

0.1703

0.1861

0.1950

0.0554

0.0778

0.0975

$\boldsymbol{\beta}_{13}$

0.1641

0.1138

0.4755

0.0286

0.1323

0.2090

$\boldsymbol{\beta}_{14}$

0.0801

0.0472

0.1349

0.0123

0.0629

0.0714

$\boldsymbol{\beta}_m$

0.97393

0.9811

0.9873

0.9635

0.9876

0.9852

With the aid of the current and proposed SMs, Table 7 displays the values of the staff members' SMs based on the attributes. Table 8 in the following provides the ranking of the Internet benefits.

It is unoccupied from Table 8, the candidate $\varsigma_6$ is attained by using the SMs $\beta_1, \beta_4, \beta_9, \beta_{10}$, the candidate $\varsigma_5$ is obtained by using the SMs $\beta_2$ and $\beta_{\hbar}$, the candidate $\varsigma_3$ is obtained by using the SMs $\beta_3, \beta_7, \beta_{11}, \beta_{12}, \beta_{13}$, and $\beta_{14}$, and the candidate $\varsigma_4$ is obtained by using the SMs $\beta_5$, and the candidate $\varsigma_2$ is obtained by using the SMs $\beta_8$.

Table 8. A comparison of the Internet benefits that the proposed and current SMs have acquired

Ranking

The best candidate

Doc

$\boldsymbol{\beta}_1$

$\varsigma_6>\varsigma_5>\varsigma_3>\varsigma_1>\varsigma_2>\varsigma_4$

$\varsigma_6$

-0.0199

$\boldsymbol{\beta}_2$

$\varsigma_5>\varsigma_3>\varsigma_6>\varsigma_2>\varsigma_1>\varsigma_4$

$\varsigma_5$

-0.053

$\boldsymbol{\beta}_3$

$\varsigma_3>\varsigma_5>\varsigma_5>\varsigma_2>\varsigma_1>\varsigma_4$

$\varsigma_3$

-0.3878

$\boldsymbol{\beta}_4$

$\varsigma_6>\varsigma_5>\varsigma_3>\varsigma_1>\varsigma_2>\varsigma_4$

$\varsigma_6$

0.1492

$\boldsymbol{\beta}_5$

$\varsigma_4>\varsigma_2>\varsigma_1>\varsigma_5>\varsigma_3>\varsigma_6$

$\varsigma_4$

-0.8148

$\boldsymbol{\beta}_6$

$\varsigma_6>\varsigma_3>\varsigma_5>\varsigma_1>\varsigma_2>\varsigma_4$

$\varsigma_6$

0.6968

$\boldsymbol{\beta}_7$

$\varsigma_3>\varsigma_1>\varsigma_5>\varsigma_6>\varsigma_2>\varsigma_4$

$\varsigma_3$

-0.4705

$\boldsymbol{\beta}_8$

$\varsigma_2>\varsigma_3>\varsigma_4>\varsigma_5>\varsigma_6>\varsigma_1$

$\varsigma_2$

-2.3613

$\boldsymbol{\beta}_9$

$\varsigma_6>\varsigma_3>\varsigma_5>\varsigma_1>\varsigma_2>\varsigma_4$

$\varsigma_6$

0.3288

$\boldsymbol{\beta}_{10}$

$\varsigma_6>\varsigma_3>\varsigma_5>\varsigma_2>\varsigma_1>\varsigma_4$

$\varsigma_6$

-0.106

$\boldsymbol{\beta}_{11}$

$\varsigma_3>\varsigma_2>\varsigma_6>\varsigma_1>\varsigma_5>\varsigma_4$

$\varsigma_3$

-0.1827

$\boldsymbol{\beta}_{12}$

$\varsigma_3>\varsigma_2>\varsigma_1>\varsigma_6>\varsigma_5>\varsigma_4$

$\varsigma_3$

-0.2756

$\boldsymbol{\beta}_{13}$

$\varsigma_3>\varsigma_6>\varsigma_1>\varsigma_5>\varsigma_2>\varsigma_4$

$\varsigma_3$

-0.1387

$\boldsymbol{\beta}_{14}$

$\varsigma_3>\varsigma_1>\varsigma_6>\varsigma_5>\varsigma_2>\varsigma_4$

$\varsigma_3$

0.0718

$\boldsymbol{\beta}_m$

$\varsigma_5>\varsigma_3>\varsigma_6>\varsigma_2>\varsigma_1>\varsigma_4$

$\varsigma_5$

-0.0352

In Figure 2, the ranking is similarly shown geometrically as follows. In Doc formula we compare the parameters with each other. Doc formula is defined in step 3.

Figure 2. The ranking of the Internet benefit obtained from the SMs in Table 8

5. Conclusion

To assess the similarity between two T-SFVs, new SMs are defined for T-SFS in this study. The recently created SM for T-SFS, which expands on the parameters of the current SMs. The discussion and mathematical work demonstrate the adaptability and viability of the suggested SM. It has been discussed what the current SMs for T-SFS can and cannot do. The following advances are some of the ones that are discussed:

$\bullet$ The recommended SM fulfills the axiom (S2) of the SM, which makes the recommended SM stay away from the circumstances of counter-intuitive inferences $\varsigma=\sigma$ infers $\beta(\varsigma, \sigma)=1$. But the proposed SMs satisfy this axiom.

$\bullet$ The proposed SMs are based parameters $\hbar_1, \hbar_2$ and $\hbar_3$. Hence, the decision-makers have a choice to select the values of these parameters individually. For this condition, decision-makers' cylinders take the proper boundaries $\hbar_1, \hbar_2, \hbar_3$ to get the sensible SM, which is in accordance with the ongoing leader style and choice climate.

$\bullet$ The proposed SM can give sensible dependable choice results to leaders. The proposed SM has the most significant level of believability, yet in addition, it can take care of the dynamic issues that the current SMs cannot settle and get sensible choice outcomes. Hence, the proposed SM is sensible and adaptable.

Author Contributions

Mehwish Sarfaraz: Conceptualization, writing, review, and editing. Muhammad Azeem: Validation, Supervision.

Informed Consent Statement

Not Available.

Data Availability

Not Available.

Acknowledgments

For this paper, no further information is available.

Conflicts of Interest

The authors declare that none of the work reported in this paper could have been influenced by any known competing financial interests or personal relationships.

References
1.
J. A. Goguen, “L. A. Zadeh. Fuzzy sets. Information and control, vol. 8 (1965), pp. 338–353. - L. A. Zadeh. Similarity relations and fuzzy orderings. Information sciences, vol. 3 (1971), pp. 177–200.,” J. Symb. Logic, vol. 38, no. 4, pp. 656–657, 1973. [Google Scholar] [Crossref]
2.
K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets Syst., vol. 20, no. 1, pp. 87–96, 1986. [Google Scholar] [Crossref]
3.
K. Atanassov and G. Gargov, “Interval valued intuitionistic fuzzy sets,” Fuzzy Sets Syst., vol. 31, no. 3, pp. 343–349, 1989. [Google Scholar] [Crossref]
4.
F. E. Boran and D. Akay, “A biparametric similarity measure on intuitionistic fuzzy sets with applications to pattern recognition,” Inf. Sci., vol. 255, pp. 45–57, 2014. [Google Scholar] [Crossref]
5.
H. Nguyen, “A new knowledge-based measure for intuitionistic fuzzy sets and its application in multiple attribute group decision making,” Expert Syst. Appl., vol. 42, no. 22, pp. 8766–8774, 2015. [Google Scholar] [Crossref]
6.
J. Mahanta and S. Panda, “A novel distance measure for intuitionistic fuzzy sets with diverse applications,” Int. J. Intell. Syst., vol. 36, no. 2, pp. 615–627, 2021. [Google Scholar] [Crossref]
7.
R. R. Yager, “Pythagorean fuzzy subsets,” in 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 2023, pp. 57–61. [Google Scholar] [Crossref]
8.
R. Ronald  Yager, “Generalized orthopair fuzzy sets,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1222–1230, 2016. [Google Scholar]
9.
B. C. Cuong, “Picture fuzzy sets,” vol. 30, no. 4, pp. 409–420, 2015. [Google Scholar] [Crossref]
10.
B. C. Cuong and V. H. Pham, “Some fuzzy logic operators for picture fuzzy sets,” in 2015 Seventh International Conference on Knowledge and Systems Engineering (KSE), Ho Chi Minh City, Vietnam, 2015, pp. 132–137. [Google Scholar] [Crossref]
11.
T. Mahmood, K. Ullah, Q. Khan, and N. Jan, “An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets,” Neural Comput. Appl., vol. 31, no. 11, pp. 7041–7053, 2019. [Google Scholar]
12.
R. Khan, K. Ullah, D. Pamucar, and M. Bari, “Performance measure using a multi-attribute decision making approach based on complex T-spherical fuzzy power aggregation operators,” J. Comput. Cogn. Eng., 2022. [Google Scholar] [Crossref]
13.
T. Senapati, G. Chen, R. Mesiar, and R. Ronald  Yager, “Novel Aczel–Alsina operations-based interval-valued intuitionistic fuzzy aggregation operators and their applications in multiple attribute decision-making process,” Int. J. Intell. Syst., 2022. [Google Scholar] [Crossref]
14.
C. Jana, T. Senapati, and M. Pal, “Pythagorean fuzzy dombi aggregation operators and its applications in multiple attribute decision-making,” Int. J. Intell. Syst., vol. 34, no. 9, pp. 2019–2038, 2019. [Google Scholar] [Crossref]
15.
T. Senapati, “Approaches to multi-attribute decision-making based on picture fuzzy Aczel–Alsina average aggregation operators,” Comp. Appl. Math., vol. 41, no. 40, pp. 1–19, 2022. [Google Scholar] [Crossref]
16.
M. R. Khan, K. Ullah, D. Pamucar, and M. Bari, “P“Performance measure using a multi-attribute decision-making approach based on complex T-spherical fuzzy power aggregation operators,” J. Comput. Cogn. Eng., vol. 3, no. 1, pp. 138–146, 2022. [Google Scholar] [Crossref]
17.
T. Mahmood and Z. Ali, “Prioritized muirhead mean aggregation operators under the complex single-valued neutrosophic settings and their application in multi-attribute decision-making,” J. Comput. Cogn. Eng., vol. 2, no. 1, pp. 56–73, 2022. [Google Scholar] [Crossref]
18.
M. Riaz and H. M. A. Farid, “Picture fuzzy aggregation approach with application to third-party logistic provider selection process,” Rep. Mech. Eng., vol. 3, no. 1, pp. 318–327, 2022. [Google Scholar] [Crossref]
19.
M. Riaz, H. Garg, H. M. A. Farid, and R. Chinram, “Multi-Criteria Decision Making Based on Bipolar Picture Fuzzy Operators and New Distance Measures,” Comput. Model. Eng. Sci., vol. 127, no. 2, pp. 771–800, 2021. [Google Scholar] [Crossref]
20.
H. Garg, “Intuitionistic fuzzy hamacher aggregation operators with entropy weight and their applications to multi-criteria decision-making problems,” Iran. J. Sci. Technol. Trans. Electr. Eng., vol. 43, no. 3, pp. 597–613, 2019. [Google Scholar] [Crossref]
21.
A. Ashraf, K. Ullah, A. Hussain, and M. Bari, “Interval-valued picture fuzzy maclaurin symmetric mean operator with application in multiple attribute decision-making,” Rep. Mech. Eng., vol. 3, no. 1, pp. 301–317, 2022. [Google Scholar] [Crossref]
22.
H. Garg, “Confidence levels based pythagorean fuzzy aggregation operators and its application to decision-making process,” Comput. Math. Organ. Theory, vol. 23, no. 4, pp. 546–571, 2017. [Google Scholar] [Crossref]
23.
D. Pamucar, A. E. Torkayesh, and S. Biswas, “Supplier selection in healthcare supply chain management during the COVID-19 pandemic: A novel fuzzy rough decision-making approach,” Ann. Oper. Res., pp. 1–43, 2022. [Google Scholar] [Crossref]
24.
M. Sarfraz, K. Ullah, M. Akram, D. Pamucar, and D. Božanić, “Prioritized aggregation operators for intuitionistic fuzzy information based on Aczel–Alsina T-norm and T-conorm and their applications in group decision-making,” Symmetry, vol. 14, no. 12, 2022. [Google Scholar] [Crossref]
25.
A. Hussain and D. Pamucar, “Multi-attribute group decision-making based on pythagorean fuzzy rough set and novel Schweizer-sklar T-norm and T-conorm,” J. Innov. Res. Math. Comput. Sci., vol. 1, no. 2, pp. 1–17, 2022. [Google Scholar]
26.
A. Hussain, X. Zhu, K. Ullah, M. Sarfaraz, S. Yin, and D. Pamucar, “Multi-attribute group decision-making based on pythagorean fuzzy rough Aczel-Alsina aggregation operators and its applications to medical diagnosis,” Heliyon, vol. 9, no. 12, p. e23067, 2023. [Google Scholar] [Crossref]
27.
M. Sarfraz, “Multi-attribute decision-making for T-spherical fuzzy information utilizing schweizer-sklar prioritized aggregation operators for recycled water,” vol. 2, no. 1, pp. 105–128, 2024. [Google Scholar] [Crossref]
28.
K. Ullah, M. Sarfraz, M. Akram, and Z. Ali, “Identification and classification of prioritized Aczel-Alsina aggregation operators based on complex intuitionistic fuzzy information and their applications in decision-making problem,” in Fuzzy Optimization, Decision-making and Operations Research: Theory and Applications, C. Jana, M. Pal, G. Muhiuddin, and P. Liu, Eds., Springer International Publishing, 2023, pp. 377–398. [Google Scholar] [Crossref]
29.
W. S. Du and B. Q Hu, “Aggregation distance measure and its Induced similarity measure between intuitionistic fuzzy sets,” vol. 60, pp. 65–71, 2015. [Google Scholar] [Crossref]
30.
Y. Donyatalab, E. Farrokhizadeh, and S. A. S. Shishavan, “Similarity measures of q-Rung orthopair fuzzy sets based on square root cosine similarity function,” in International Conference on Intelligent and Fuzzy Systems, Springer, 2020, pp. 475–483. [Google Scholar] [Crossref]
31.
W. R. W. Mohd and L. Abdullah, “Similarity measures of pythagorean fuzzy sets based on combination of cosine similarity measure and euclidean distance measure,” in AIP Conference Proceedings, AIP Publishing LLC, 2018, p. 030017. [Google Scholar] [Crossref]
32.
G. Wei, “Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making,” Informatica, vol. 28, no. 3, pp. 547–564, 2017. [Google Scholar] [Crossref]
33.
N. Van Dinh and N. Xuân Thảo, “Some measures of picture fuzzy sets and their application in multi-attribute decision making,” Int. J. Math. Sci. Comput., vol. 4, pp. 23–41, 2018. [Google Scholar] [Crossref]
34.
P. Singh, N. K. Mishra, M. Kumar, S. Saxena, and V. Singh, “Risk analysis of flood disaster based on similarity measures in picture fuzzy environment,” Afrika Matematika, vol. 29, pp. 1019–1038, 2018. [Google Scholar] [Crossref]
35.
M. Luo and Y. Zhang, “A new similarity measure between picture fuzzy sets and its application,” Eng. Appl. Artif. Intell., vol. 96, p. 103956, 2020. [Google Scholar] [Crossref]
36.
M. Rafiq, S. Ashraf, S. Abdullah, T. Mahmood, and S. Muhammad, “The cosine similarity measures of spherical fuzzy sets and their applications in decision making,” J. Intell. Fuzzy Syst., vol. 36, no. 6, pp. 6059–6073, 2019. [Google Scholar] [Crossref]
37.
R. R. Zhao, M. X. Luo, S. G. Li, and L. N. Ma, “A parametric similarity measure between picture fuzzy sets and its applications in multi-attribute decision-making,” Iranian J. Fuzzy Syst., vol. 20, no. 1, pp. 87–102, 2023. [Google Scholar] [Crossref]
38.
X. Shen, S. Sakhi, K. Ullah, M. N. Abid, and Y. Jin, “Information measures based on T-spherical fuzzy sets and their applications in decision making and pattern recognition,” Axioms, vol. 11, no. 7, p. 302, 2022. [Google Scholar] [Crossref]
39.
K. Ullah, T. Mahmood, and N. Jan, “Similarity measures for T-spherical fuzzy sets with applications in pattern recognition,” Symmetry, vol. 10, no. 6, p. 193, 2018. [Google Scholar] [Crossref]
40.
Y. Jin, M. Hussain, K. Ullah, and A. Hussain, “A new correlation coefficient based on T-spherical fuzzy information with its applications in medical diagnosis and pattern recognition,” Symmetry, vol. 14, no. 11, p. 2317, 2022. [Google Scholar] [Crossref]
41.
K. Ullah, T. Mahmood, and N. Jan, ““Similarity measures for T-spherical fuzzy sets with applications in pattern recognition,” Symmetry, vol. 10, no. 6, p. 193, 2018. [Google Scholar] [Crossref]

Cite this:
APA Style
IEEE Style
BibTex Style
MLA Style
Chicago Style
GB-T-7714-2015
Sarfraz, M. & Azeem, M. (2024). Parametric Similarity Measurement of T-Spherical Fuzzy Sets for Enhanced Decision-Making. Int J. Knowl. Innov Stud., 2(1), 29-44. https://doi.org/10.56578/ijkis020104
M. Sarfraz and M. Azeem, "Parametric Similarity Measurement of T-Spherical Fuzzy Sets for Enhanced Decision-Making," Int J. Knowl. Innov Stud., vol. 2, no. 1, pp. 29-44, 2024. https://doi.org/10.56578/ijkis020104
@research-article{Sarfraz2024ParametricSM,
title={Parametric Similarity Measurement of T-Spherical Fuzzy Sets for Enhanced Decision-Making},
author={Mehwish Sarfraz and Muhammad Azeem},
journal={International Journal of Knowledge and Innovation Studies},
year={2024},
page={29-44},
doi={https://doi.org/10.56578/ijkis020104}
}
Mehwish Sarfraz, et al. "Parametric Similarity Measurement of T-Spherical Fuzzy Sets for Enhanced Decision-Making." International Journal of Knowledge and Innovation Studies, v 2, pp 29-44. doi: https://doi.org/10.56578/ijkis020104
Mehwish Sarfraz and Muhammad Azeem. "Parametric Similarity Measurement of T-Spherical Fuzzy Sets for Enhanced Decision-Making." International Journal of Knowledge and Innovation Studies, 2, (2024): 29-44. doi: https://doi.org/10.56578/ijkis020104
Sarfraz M., Azeem M.. Parametric Similarity Measurement of T-Spherical Fuzzy Sets for Enhanced Decision-Making[J]. International Journal of Knowledge and Innovation Studies, 2024, 2(1): 29-44. https://doi.org/10.56578/ijkis020104
cc
©2024 by the author(s). Published by Acadlore Publishing Services Limited, Hong Kong. This article is available for free download and can be reused and cited, provided that the original published version is credited, under the CC BY 4.0 license.