Javascript is required
Abdellatif, A., Abdellatef, H., Kanesan, J., Chow, C. O., Chuah, J. H., & Gheni, H. M. (2022). Improving the heart disease detection and patients’ survival using supervised infinite feature selection and improved weighted random forest. IEEE Access., 10, 67363–67372. [Google Scholar] [Crossref]
Ahmad, G. N., Fatima, H., Ullah, S., & Saidi, A. S. (2022). Efficient medical diagnosis of human heart diseases using machine learning techniques with and without GridSearchCV. IEEE Access., 10, 80151–80173. [Google Scholar] [Crossref]
Ali, S. N., Shuvo, S. B., Al-Manzo, M. I. S., Hasan, A., & Hasan, T. (2023). An end-to-end deep learning framework for real-time denoising of heart sounds for cardiac disease detection in unseen noise. IEEE Access., 11, 87887–87901. [Google Scholar] [Crossref]
Bertsimas, D., Mingardi, L., & Stellato, B. (2021). Machine learning for real-time heart disease prediction. IEEE J. Biomed. Health Inform., 25(9), 3627–3637. [Google Scholar] [Crossref]
Boukhatem, C., Youssef, H. Y., & Nassif, A. B. (2022). Heart disease prediction using machine learning. In 2022 Advances in Science and Engineering Technology International Conferences (ASET). (pp. 1–6). [Google Scholar] [Crossref]
Cenitta, D., Arjunan, R. V., & Prema, K. V. (2022). Ischemic heart disease prediction using optimized squirrel search feature selection algorithm. IEEE Access., 10, 122995–123006. [Google Scholar] [Crossref]
El-Sofany, H. F. (2024). Predicting heart diseases using machine learning and different data classification techniques. IEEE Access., 12, 106146–106160. [Google Scholar] [Crossref]
Jain, S. K. & Bhaumik, B. (2017). An energy efficient ECG signal processor detecting cardiovascular diseases on smartphone. IEEE Trans. Biomed. Circuits Syst., 11(2), 314–323. [Google Scholar] [Crossref]
Karhade, J., Dash, S., Ghosh, S. K., Dash, D. K., & Tripathy, R. K. (2022). Time–frequency-domain deep learning framework for the automated detection of heart valve disorders using PCG signals. IEEE Trans. Instrum. Meas., 71, 1–11. [Google Scholar] [Crossref]
Khan, H., Javaid, N., Bashir, T., Akbar, M., Alrajeh, N., & Aslam, S. (2024). Heart disease prediction using novel ensemble and blending based cardiovascular disease detection networks: EnsCVDD-Net and BlCVDD-Net. IEEE Access., 12, 109230–109254. [Google Scholar] [Crossref]
Kumar, A., Singh, K. U., & Kumar, M. (2023). A clinical data analysis based diagnostic systems for heart disease prediction using ensemble method. Big Data Min. Analyt., 6(4), 513–525. [Google Scholar] [Crossref]
Li, H., Ren, G., Yu, X., Wang, D., & Wu, S. (2020). Discrimination of the diastolic murmurs in coronary heart disease and in valvular disease. IEEE Access., 8, 160407–160413. [Google Scholar] [Crossref]
Mohan, S., Thirumalai, C., & Srivastava, G. (2019). Effective heart disease prediction using hybrid machine learning techniques. IEEE Access., 7, 81542–81554. [Google Scholar] [Crossref]
Rahim, A., Rasheed, Y., Azam, F., Anwar, M. W., Rahim, M. A., & Muzaffar, A. W. (2021). An integrated machine learning framework for effective prediction of cardiovascular diseases. IEEE Access., 9, 106575–106588. [Google Scholar] [Crossref]
Rezaeieh, S. A., Bialkowski, K. S., & Abbosh, A. M. (2014). Microwave system for the early stage detection of congestive heart failure. IEEE Access., 2, 921–929. [Google Scholar] [Crossref]
Salau, A. O., Assegie, T. A., Chhabra, G., Kaushik, K., & Braide, S. L. (2024). Heart disease detection model using support vector machine with feature selection. In 2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT). (pp. 204–207). [Google Scholar] [Crossref]
Sarkar, S. & Koehler, J. (2012). A dynamic risk score to identify increased risk for heart failure decompensation. IEEE Trans. Biomed. Eng., 60(1), 147–150. [Google Scholar] [Crossref]
Schmidt, S. E., Holst-Hansen, C., Hansen, J., Toft, E., & Struijk, J. J. (2015). Acoustic features for the identification of coronary artery disease. IEEE Trans. Biomed. Eng., 62(11), 2611–2619. [Google Scholar] [Crossref]
Shokouhmand, A., Wen, H. R., Khan, S., Puma, J. A., Patel, A., Green, P., Ayazi, F., & Ebadi, N. (2023). Diagnosis of coexisting valvular heart diseases using image-to-sequence translation of contact microphone recordings. IEEE Trans. Biomed. Eng., 70(9), 2540–2551. [Google Scholar] [Crossref]
Shuvo, S. B., Ali, S. N., Swapnil, S. I., Al-Rakhami, M. S., & Gumaei, A. (2021). CardioXNet: A novel lightweight deep learning framework for cardiovascular disease classification using heart sound recordings. IEEE Access., 9, 36955–36967. [Google Scholar] [Crossref]
Su, Y. S., Ding, T. J., & Chen, M. Y. (2021). Deep learning methods in internet of medical things for valvular heart disease screening system. IEEE Internet Things J., 8(23), 16921–16932. [Google Scholar] [Crossref]
Tao, R., Zhang, S. L., Huang, X., Tao, M. F., Ma, J., Ma, S. X., Zhang, C. X., Zhang, T. X., Tang, F. K., Lu, J. P., Shen, C. X., & Xie, X. M. (2019). Magnetocardiography-based ischemic heart disease detection and localization using machine learning methods. IEEE Trans. Biomed. Eng., 66(6), 1658–1667. [Google Scholar] [Crossref]
Wang, J., Huang, X., Tang, S.-Y., Shi, G. M., Ma, X., & Guo, J. (2019). Blood triglyceride monitoring with smartphone as electrochemical analyzer for cardiovascular disease prevention. IEEE J. Biomed. Health Inform., 23(1), 66–71. [Google Scholar] [Crossref]
Wang, J., Liu, C., Li, L., Li, W., Yao, L., Li, H., & Zhang, H. (2020). A stacking-based model for non-invasive detection of coronary heart disease. IEEE Access., 8, 37124–37133. [Google Scholar] [Crossref]
Yuan, X., Chen, J., Zhang, K., Wu, Y., & Yang, T. (2021). A stable AI-based binary and multiple class heart disease prediction model for IoMT. IEEE Trans. Ind. Informat., 18(3), 2032–2040. [Google Scholar] [Crossref]
  • statusCode :500
  • fatal :false
  • unhandled :false
  • __nuxt_error :true