Javascript is required
1.
A. B. Abubakar, K. Muangchoo, A. M. Abubakar, and A. H. Ibrahim, “A spectral gradient projection method for sparse signal reconstruction in compressive sensing,” Mod. Appl. Sci., vol. 14, no. 5, pp. 86–93, 2020. [Google Scholar] [Crossref]
2.
S. Devila, M. Malik, and W. Giyarti, “A new hybrid PRP-MMSIS conjugate gradient method and its application in portfolio selection,” J. Ris. Apl. Mat., vol. 5, no. 1, pp. 47–59, 2021. [Google Scholar] [Crossref]
3.
A. H. Ibrahim, J. Deepho, A. B. Abubakar, and A. Adamu, “A three-term Polak-Ribiere-Polyak derivative-free method and its application to image restoration,” Sci. Afr., vol. 13, p. e00880, 2021. [Google Scholar] [Crossref]
4.
W. Hu, J. Wu, and G. Yuan, “Some modified Hestenes-Stiefel conjugate gradient algorithms with application in image restoration,” Appl. Numer. Math., vol. 158, pp. 360–376, 2020. [Google Scholar] [Crossref]
5.
E. G. Birgin and J. M. Martnez, “A spectral conjugate gradient method for unconstrained optimization,” Appl. Math. Optim., vol. 43, no. 2, pp. 117–128, 2001. [Google Scholar] [Crossref]
6.
Z. X. Liu, Y. Ni, H. W. Liu, and W. M. Sun, “A new subspace minimization conjugate gradient method for unconstrained minimization,” J. Optim. Theo. Appl., vol. 200, pp. 820–851, 2024. [Google Scholar] [Crossref]
7.
N. Salihu, P. Kumam, and S. Salisu, “Two efficient nonlinear conjugate gradient methods for Riemannian manifolds,” Comput. Appl. Math., vol. 43, p. 415, 2024. [Google Scholar] [Crossref]
8.
S. Yao and L. Ning, “An adaptive three-term conjugate gradient method based on self-scaling memoryless BFGS matrix,” J. Comput. Appl. Math., vol. 332, pp. 72–85, 2018. [Google Scholar] [Crossref]
9.
L. Wang, M. Cao, F. Xing, and Y. Yang, “The new spectral conjugate gradient method for large-scale unconstrained optimisation,” J. Inequal. Appl., vol. 2020, no. 1, pp. 1–11, 2020. [Google Scholar] [Crossref]
10.
P. Faramarzi and K. Amini, “A modified spectral conjugate gradient method with global convergence,” J. Optim. Theory Appl., vol. 182, pp. 667–690, 2019. [Google Scholar] [Crossref]
11.
S. Babaie-Kafaki and R. Ghanbari, “A descent family of Dai-Liao conjugate gradient methods,” Optim. Methods Softw., vol. 29, no. 3, pp. 583–591, 2014. [Google Scholar] [Crossref]
12.
I. E. Livieris, V. Tampakas, and P. Pintelas, “A descent hybrid conjugate gradient method based on the memoryless BFGS update,” Numer. Algorithms, vol. 79, pp. 1169–1185, 2018. [Google Scholar] [Crossref]
13.
N. Andrei, “Three-term conjugate gradient methods,” in Nonlinear Conjugate Gradient Methods for Unconstrained Optimization, Cham, Switzerland: Springer, 2020, pp. 311–347. [Google Scholar] [Crossref]
14.
Y. Chen and Y. Yang, “A three-term conjugate gradient algorithm using subspace for large-scale unconstrained optimization,” Commun. Math. Sci., vol. 18, no. 5, pp. 1179–1190, 2020. [Google Scholar] [Crossref]
15.
P. Faramarzi and K. Amini, “A spectral three-term Hestenes-Stiefel conjugate gradient method,” 4OR, vol. 19, pp. 71–92, 2021. [Google Scholar] [Crossref]
16.
A. Y. Al-Bayati and S. Abbas, “A robust spectral three-term conjugate gradient algorithm for solving unconstrained minimization,” AL-Rafidain J. Comput. Sci. Math., vol. 13, no. 1, pp. 87–104, 2019. [Google Scholar] [Crossref]
17.
M. R. Eslahchi and S. Bojari, “Global convergence of a new sufficient descent spectral three-term conjugate gradient class for large-scale optimization,” Optim. Methods Softw., vol. 37, no. 3, pp. 830–843, 2020. [Google Scholar] [Crossref]
18.
Y.-X. Yuan and J. Stoer, “A subspace study on conjugate gradient algorithms,” J. Appl. Math. Mech., vol. 75, no. 1, pp. 69–77, 1995. [Google Scholar] [Crossref]
19.
J. C. Gilbert and J. Nocedal, “Global convergence properties of conjugate gradient methods for optimization,” SIAM J. Optim., vol. 2, no. 1, pp. 21–42, 1992. [Google Scholar] [Crossref]
20.
N. I. Gould, D. Orban, and P. L. Toint, “CUTEr and SifDec: A constrained and unconstrained testing environment, revisited,” ACM Trans. Math. Softw., vol. 29, no. 4, pp. 373–394, 2003. [Google Scholar] [Crossref]
21.
E. D. Dolan and J. J. Moré, “Benchmarking optimization software with performance profiles,” Math. Program., vol. 91, pp. 201–213, 2002. [Google Scholar] [Crossref]
22.
Y. T. Li, C. Q. Tan, W. H. Ip, and C. H. Wu, “Dynamic blockchain adoption for freshness-keeping in the fresh agricultural product supply chain,” Expert Syst. Appl., vol. 217, p. 119494, 2023. [Google Scholar] [Crossref]
Search
Open Access
Research article

A New Spectral Three-Term Conjugate Gradient Method for Unconstrained Optimization and Its Application

mingyuan cao,
siqi liu,
ruobing mei,
zongxu li,
yueting yang*
School of Mathematics and Statistics, Beihua University, 132013 Jilin, China
Acadlore Transactions on Applied Mathematics and Statistics
|
Volume 2, Issue 4, 2024
|
Pages 252-264
Received: 10-19-2024,
Revised: 11-24-2024,
Accepted: 12-26-2024,
Available online: 12-30-2024
View Full Article|Download PDF

Abstract:

In this paper, we derive a new conjugate gradient (CG) direction with random parameters which are obtained by minimizing the deviation between search direction matrix and self-scaled memoryless Broyden-Fletcher-Goldfard-Shanno (BFGS) update. We propose a new spectral three-term CG algorithm and establish the global convergence of new method for uniformly convex functions and general nonlinear functions, respectively. Numerical experiments show that our method has nice numerical performance on nonconvex functions and supply chain problems.

Keywords: Random parameter, Spectral three-term conjugate gradient, Global convergence, Unconstrained optimization

1. Introduction

Many problems of relevance in compressing sensing [1], portfolio selection [2] and image restoration [3], [4] can be transformed into the following unconstrained optimization problem

$\min\limits_{x\in \mathbb{R}^n} f(x),$
(1)

where,

$f:~\mathbb{R}^n \rightarrow \mathbb{R}$ is continuous differentiable. The spectral conjugate gradient (SCG) method [5] is one of the most popular class of algorithm for solving problem Eq. (1), due to its simplicity, low memory requirement and strong convergence performance. Starting from an initial point $x_0\in \mathbb{R}^n$, the iterative formula of the SCG method is given by

$x_{k+1}=x_k+\alpha_k d_k,~k\geq 0,$
(2)

where, stepsize $\alpha_k>0$ is generated by line search. The search direction $d_k$ is defined by

$d_0=-g_0,~d_k=-\theta_kg_k+\beta_{k-1} d_{k-1},~k\geq 1,$
(3)

where,

$g_k=\nabla f(x_k)$ is the gradient of $f(x)$ at current point $x_k$, $\theta_k$ is a spectral parameter and $\beta_{k-1}$ is a scalar called the conjugate gradient (CG) parameter. There are many choices of $\theta_k$ and $\beta_{k-1}$, which may lead to different computational efficiency and convergence properties [5], [6], [7], [8], [9], [10].

Babaie-Kafaki and Ghanbari [11] proposed a descent family of the Dai-Liao CG (DDL) method with the search direction

$d_{k+1}=-\Big(I-\frac{s_ky_k^{\rm T}}{s_k^{\rm T}y_k}+t_k\frac{s_k s_k^{\rm T}}{s_k^{\rm T}y_k}\Big)g_{k+1}\doteq -Q_{k+1}g_{k+1},$
(4)

where,

$Q_{k+1}$ is called a search direction matrix. They obtained the relationship

$d_{k+1}^{\rm T}g_{k+1}=-g_{k+1}^{\rm T}Q_{k+1}g_{k+1}=-g_{k+1}^{\rm T}A_{k+1}g_{k+1},$
(5)

where,

$A_{k+1}\doteq \frac{Q_{k+1}^{\rm T}+Q_{k+1}}{2}=I-\frac{1}{2}\frac{s_ky_k^{\rm T}+y_ks_k^{\rm T}}{s_k^{\rm T}y_k}+t_k\frac{s_ks_k^{\rm T}}{s_k^{\rm T}y_k}.$
(6)

By letting the smallest eigenvalue of $A_{k+1}$ has a lower bound greater than 0, they determined parameter $t_k$. Then the search direction $d_{k+1}$ was descent.

Livieris et al. [12] proposed a descent hybrid CG method with the search direction

$d_{k+1}=-\Big(I-\lambda_k\frac{d_kg_{k+1}^{\rm T}}{d_k^{\rm T}y_k}-(1-\lambda_k)\frac{d_ky_k^{\rm T}}{d_k^{\rm T}y_k}\Big)g_{k+1} \doteq -P_{k+1}g_{k+1}.$
(7)

They obtained the hybrization parameter $\lambda_k$ by minimizing the distance between $P_{k+1}$ and self-scaled memoryless Broyden-Fletcher-Goldfard-Shanno (BFGS) update in the Frobenius norm.

Recently, the spectral three-term CG methods have been paid more attention [13], [14], [15], [16], [17]. Chen and Yang [14] using subspace presented a three-term CG algorithm for large-scale unconstrained optimization. Faramarzi and Amini [15] proposed a spectral three-term Hestenes-Stiefel CG method. Al-Bayati and Abbas [16] gave a robust spectral three-term CG algorithm for solving unconstrained minimization problems. Eslahchi and Bojari [17] proposed a new sufficient descent spectral three-term CG class for large-scale optimization.

Motivated by the above works, in order to make better use of the properties of spectral parameter, we consider the search direction matrix

$A_{k+1}=\theta_kI-\frac{1}{2}\frac{s_ky_k^{\rm T}+y_ks_k^{\rm T}}{s_k^{\rm T}y_k}+t_k\frac{s_ks_k^{\rm T}}{s_k^{\rm T}y_k}$
(8)

to propose a new spectral three-term CG method, where scaling parameter $\theta_k$ and $t_k$ are undetermined parameters. The corresponding search direction is

$d_{k+1}=-A_{k+1}g_{k+1}=-\theta_kg_{k+1}+\beta_ks_k+\gamma_ky_k,$
(9)

where,

\begin{eqnarray}\nonumber&&\beta_k=\frac{1}{2}\frac{y_k^{\rm T}g_{k+1}}{s_k^{\rm T}y_k}-t_k\frac{s_k^{\rm T}g_{k+1}}{s_k^{\rm T}y_k} ~\mbox{and}~ \gamma_k=\frac{1}{2}\frac{s_k^{\rm T}g_{k+1}}{s_k^{\rm T}y_k}.\nonumber\end{eqnarray}

Based on the idea of the study [12], our main work is to give a new choice of parameters $t_k$ and $\theta_k$ to propose a spectral three-term CG method. The contributions of this article are listed as follows:

$\diamondsuit$ A random parameter which leads to our method more relaxed and elastic, is introduced to construct $\beta_k$ and $\theta_k$ in the search direction.

$\diamondsuit$ The search direction satisfies the sufficient descent condition. Under appropriate assumptions, we give global convergence of new method for general functions.

$\diamondsuit$ The new method has good numerical performance for the objective function with sharp curvature change.

$\diamondsuit$ The new method is applied to the supply chain problem, which shows that the new method is effective.

The motivation and algorithm are analyzed in the next section, we find parameter $t_k$ including a random parameter at each iterate, and obtain parameters $\beta_k$ and $\theta_k$. Then we state a new spectral three-term CG method. In Section 3, global convergence of our method is proved for uniformly convex functions and general nonlinear functions. In Section 4, some numerical experiments and application results are reported. Conclusions are made in the last section.

2. Motivation and Algorithm

In this section, our main aim is to discuss how to choose $t_k$ and propose a random spectral three-term CG method. The search direction is derived by minimizing the deviation between the search direction matrix and a quasi-Newton update, in conjunction with choices of random parameter. Consider model

$\min\|D_{k+1}\|_F^2\doteq \|A_{k+1}-B_{k+1}^{-1}\|_F^2,$
(10)

where,

$\|\cdot\|_F$ denotes the Frobenius norm, $A_{k+1}$ is determined by Eq. (8), $B_{k+1}^{-1}$ is a self-scaled memoryless BFGS matrix

$B_{k+1}^{-1}=\theta_k I-\theta_k\frac{s_ky_k^{\rm T}+y_ks_k^{\rm T}}{s_k^{\rm T}y_k}+\left(1+\theta_k\frac{\|y_k\|^2}{s_k^{\rm T}y_k}\right)\frac{s_ks_k^{\rm T}}{s_k^{\rm T}y_k},$
(11)

and $\theta_k$ is a scaling parameter. From Eq. (8) and Eq. (11), we have

\begin{eqnarray}\nonumber\|D_{k+1}\|_F^2&=&{\rm tr}(D_{k+1}^{\rm T}D_{k+1}) \nonumber\\&=& \frac{\|s_k\|^4}{(s_k^{\rm T}y_k)^2}t^{2}+ 2\left[(2\theta_k-1)\frac{\|s_k\|^2}{s_k^{\rm T}y_k}-\frac{\|s_k\|^4}{(s_k^{\rm T}y_k)^2}-\theta_k\frac{\|y_k\|^2\|s_k\|^4}{(s_k^{\rm T}y_k)^3}\right]t+\zeta,\nonumber\end{eqnarray}

where,

$\zeta$ is a constant independent of $t$. This is a second-degree polynomial of variable $t$ and the coefficient of $t^2$ is positive. Therefore, the minimum of problem Eq. (10) is

$t_k={\rm arg\min}\left\{{\rm tr}(D_{k+1}^{\rm T}D_{k+1})\right\}=1+\frac{\theta_k\chi_k}{\sqrt{p_k}}+(1-2\theta_k)\sqrt{p_k}\chi_k,$
(12)

where,

$p_k=\cos^2 \langle s_k, y_k\rangle$ and $\chi_k=\frac{\|y_k\|}{\|s_k\|}$. Instead of the mean value to $p_k$ in the study [18], we set $p_k$ is a random number in the interval $[\underline{m}, ~ \overline{m}]$, where $0< \underline{m} < \overline{m}<\frac{1}{2}.$ There are many possible ways to choose $\theta_k$, we prefer to use

$\theta_k=\max \left\{\frac{1-\underline{m}}{2(1-\overline{m})}, \frac{\|s_k\|^2}{s_k^{\rm T}y_k}\right\}~~{\rm or}~~ \theta_k=\max \left\{\frac{1-\underline{m}}{2(1-\overline{m})}, \frac{s_k^{\rm T}y_k}{\|y_k\|^2}\right\}.$
(13)

Thus, $t_k$ in Eq. (12) can be regarded as random parameters. Substitute Eq. (12) into Eq. (9), then we get the following new search direction

$d_{k+1}=-\theta_kg_{k+1}+\left[\frac{1}{2}\frac{y_k^{\rm T}g_{k+1}}{s_k^{\rm T}y_k}-2\gamma_k\Big(1+\frac{\theta_k\chi_k}{\sqrt{p_k}}+(1-2\theta_k)\sqrt{p_k}\chi_k\Big)\right]s_k+\gamma_ky_k.$
(14)

Now, we state a description of the random spectral three-term conjugate gradient algorithm (RSTTCG) as follows.

RSTTCG Algorithm

Step 0. Given $x_0\in\mathbb{R}^n$, $\varepsilon>0$, $0< \underline{m} < \overline{m}<\frac{1}{2} $ and $0<\rho<\sigma<1$. Let $f_0=f(x_0)$, $g_0=\nabla f(x_0)$, $d_0:=-g_0$ and $k:=0$.

Step 1. If $\|g_k\|\leq\varepsilon$, stop and output $x_k$.

Step 2. Compute $\alpha_k$ satisfying the the strong Wolfe line search conditions

$f(x_k+\alpha d_k)-f(x_k)\leq \rho \alpha g_k^{\rm T}d_k,$
(15)
$|g_{k+1}^{\rm T}d_k|\leq -\sigma g_k^{\rm T}d_k.$
(16)

Step 3. Set $x_{k+1}=x_k+\alpha_kd_k$. Calculate $f_{k+1}$, $g_{k+1}$, $s_k$ and $y_k$.

Step 4. Compute $t_k$ by Eq. (12) and the search direction $d_{k+1}$ by Eq. (13) and Eq. (14). Set $k:=k+1$ and go to Step 1.

The following lemma shows the sufficient descent property of search direction.

Lemma 2.1 Let the sequence $\{d_{k+1}\}$ be generated by RSTTCG algorithm. There exists a positive constant $c$ satisfying

$g_{k+1}^{\rm T}d_{k+1}\leq-c\|g_{k+1}\|^2.$
(17)

Proof By Eq. (16), we have $s_k^{\rm T}y_k=s_k^{\rm T}(g_{k+1}-g_{k})\geq (\sigma-1)s_k^{\rm T}g_{k}>0$. Since $s_k^{\rm T}y_k=\|s_k\|\|y_k\|\cos\langle s_k, y_k\rangle$, then $\cos\langle s_k, y_k\rangle=\sqrt{p_k}>0$. Combined with Eq. (14), we get

\begin{eqnarray}g_{k+1}^{\rm T}d_{k+1}&=& -\theta_k\|g_{k+1}\|^2+\frac{y_k^{\rm T}g_{k+1} g_{k+1}^{\rm T}s_k s_k^{\rm T}y_k}{(s_k^{\rm T}y_k)^2}\nonumber\\&&-\left[1+\frac{\theta_k\chi_k}{\sqrt{p_k}}+(1-2\theta_k)\sqrt{p_k}\chi_k \right]\frac{(s_k^{\rm T}g_{k+1})^2}{s_k^{\rm T}y_k}\nonumber\\&=& -\theta_k\|g_{k+1}\|^2+\frac{y_k^{\rm T}g_{k+1} g_{k+1}^{\rm T}s_k s_k^{\rm T}y_k}{(s_k^{\rm T}y_k)^2}\nonumber\\&&-\left[1+\frac{\theta_k}{p_k}\frac{s_k^{\rm T}y_k}{\|s_k\|^2}+(1-2\theta_k)p_k\frac{\|y_k\|^2}{s_k^{\rm T}y_k}\right]\frac{(s_k^{\rm T}g_{k+1})^2}{s_k^{\rm T}y_k}\nonumber\\&\leq& -\theta_k\|g_{k+1}\|^2-\left[1+\frac{\theta_k}{p_k}\frac{s_k^{\rm T}y_k}{\|s_k\|^2}+(1-2\theta_k)p_k\frac{\|y_k\|^2}{s_k^{\rm T}y_k}\right]\frac{(s_k^{\rm T}g_{k+1})^2}{s_k^{\rm T}y_k} \nonumber\\&& +\frac{1}{2}\frac{(g_{k+1}^{\rm T}s_k)^2\|y_k\|^2+(s_k^{\rm T}y_k)^2\|g_{k+1}\|^2}{(s_k^{\rm T}y_k)^2} \nonumber\\&=& (\frac{1}{2}-\theta_k)\|g_{k+1}\|^2-\frac{(s_k^{\rm T}g_{k+1})^2}{s_k^{\rm T}y_k}\nonumber\\&&-\frac{(s_k^{\rm T}g_{k+1})^2}{s_k^{\rm T}y_k}\left[\frac{\theta_k}{p_k}\frac{s_k^{\rm T}y_k}{\|s_k\|^2}+\Big((1-2\theta_k)p_k-\frac{1}{2}\Big)\frac{\|y_k\|^2}{s_k^{\rm T}y_k}\right]\nonumber\\&\leq& (\frac{1}{2}-\theta_k)\|g_{k+1}\|^2-\frac{(s_k^{\rm T}g_{k+1})^2}{s_k^{\rm T}y_k}\left[1+\frac{\|y_k\|}{\sqrt{p_k}\|s_k\|}\Big(\theta_k+p_k-2\theta_kp_k-\frac{1}{2}\Big)\right]\nonumber\\&\leq& (\frac{1}{2}-\theta_k)\|g_{k+1}\|^2 \leq \left[\frac{1}{2} -\frac{1-\underline{m}}{2(1-\overline{m})}\right]\|g_{k+1}\|^2 = -\frac{\overline{m}-\underline{m}}{2(1-\overline{m})}\|g_{k+1}\|^2.\nonumber\end{eqnarray}

The second of above inequality is from the fact $a^{\rm T}b\leq\frac{1}{2}(\|a\|^2+\|b\|^2)$, in which $a=g_{k+1}^{\rm T}s_k y_k$ and $b=s_k^{\rm T}y_kg_{k+1}$. Combining Eq. (13), let $c=\frac{\overline{m}-\underline{m}}{2(1-\overline{m})}$, the proof is completed. $\Box$

3. Convergence Analysis

In this section, to prove the global convergence of RSTTCG algorithm, we give the following assumptions.

Assumption (i). The level set $\Omega=\{x\in \mathbb{R}^n:~f(x)\leq f(x_0)\}$ is bounded, namely, there exists $\delta>0$ satisfying $\|x\|\leq \delta,~~\forall x\in \Omega.$

Assumption (ii). The gradient of function $f$ is Lipschitz continuous in some neighborhood $\mathbb{N}$ of $\Omega$, namely, there exists $L>0$ satisfying

$\begin{align}\|g(x)-g(y)\|\leq L\|x-y\|,~~\forall x,y\in \mathbb{N}.\end{align}$
(18)

Based on the above assumptions, we know

$\begin{align}\|s_k\|=\|x_{k+1}-x_k\| \leq\|x_{k+1}\|+\|x_k\|\leq 2\delta.\end{align}$
(19)

Besides, we can easily see that $g(x)$ is bounded, namely, there exists a positive constant $L_1$ such that $\|g(x)\|\leq L_1, ~~\forall x\in \Omega.$

Lemma 3.1 Let the sequence $\{d_{k}\}$ be generated by RSTTCG algorithm. If Assumption (ii) holds, then

$\alpha_k\geq \frac{(1-\sigma)|g_k^{\rm T}d_k|}{L\|d_k\|^2}.$
(20)

Proof Subtracting $g_k^{\rm T}d_k$ from both sides of the left inequality of Eq. (16) and using the Lipschitz condition, we get

\begin{eqnarray}\nonumber(\sigma-1)g_k^{\rm T}d_k\leq (g_{k+1}-g_k)^{\rm T}d_k=y_k^{\rm T}d_k\leq \|y_k\|\|d_k\|\leq \alpha_kL\|d_k\|^2.\end{eqnarray}

Since $0<\sigma<1$ and $d_k$ is a descent direction, then Eq. (20) holds. The proof is completed. $\Box$

Lemma 3.2 Let the sequence $\{d_{k}\}$ be generated by RSTTCG algorithm. If Assumptions (i)-(ii) hold, we have the following Zoutendijk condition

$\sum\limits_{k=0}^\infty \frac{(g_k^{\rm T}d_k)^2}{\|d_k\|^2}<+\infty.$
(21)

Proof From the first inequality Eq. (15) of the strong Wolfe conditions, Assumption (ii) and Lemma 3.1, we have

\begin{eqnarray}f_k-f_{k+1}\geq-\rho\alpha_kg_k^{\rm T}d_k\geq-\rho\frac{(1-\sigma)(g_k^{\rm T}d_k)^2}{L\|d_k\|^2}.\end{eqnarray}

From Assumption (i), we know $f(x)$ is bounded from below, then Eq. (21) is obtained. The proof is completed. $\Box$

Theorem 3.1 Suppose that Assumptions (i) and (ii) hold. The sequence $\{x_k\}$ is generated by RSTTCG algorithm. If $f$ is a uniformly convex function on $\Omega$, namely, there exists $\mu>0$ such that

$\begin{align}(\nabla f(x)-\nabla f(y))^{\rm T}(x-y)\geq \mu\|x-y\|^2,~~\forall x,y\in \mathbb{N},\end{align}$
(22)

Then, we have

$\lim\limits_{k\rightarrow\infty}\|g_k\|=0.$

Proof From the Lipschitz condition Eq. (18), we have

$\|y_k\|=\|g_{k+1}-g_k\|\leq L\|s_k\|.$
(23)

It follows Eq. (22) and the Cauchy inequality that

$\mu\|s_k\|^2\leq y_k^{\rm T}s_k\leq\|y_k\|\|s_k\|,$
(24)

i.e.,

$\mu\|s_k\|\leq\|y_k\|.$
(25)

Then, from Eqs. (23)-(25), we get

$\frac{1}{L} = \frac{\|s_k\|}{L\|s_k\|}\leq \frac{\|s_k\|^2}{\|y_k\|\|s_k\|}\leq \frac{\|s_k\|^2}{s_k^{\rm T}y_k}\leq \frac{\|s_k\|^2}{\mu\|s_k\|^2}=\frac{1}{\mu},$
(26)
$\frac{\mu}{L^2} =\frac{\mu\|s_k\|^2}{L^2\|s_k\|^2}\leq \frac{\mu\|s_k\|^2}{\|y_k\|^2}\leq \frac{s_k^{\rm T}y_k}{\|y_k\|^2} \leq \frac{\|y_k\|\|s_k\|}{\|y_k\|}\leq\frac{\|s_k\|}{\|y_k\|}\leq \frac{\|s_k\|}{\mu\|s_k\|}\leq \frac{1}{\mu}.$
(27)

Let $\theta_{\max}=\max\{\frac{1-\underline{m}}{2(1-\overline{m})}, \frac{1}{\mu}\}$, we have $\theta_k \leq \theta_{\max}$. From Eq. (26) and Eq. (27), we obtain

$t_k=1+\frac{\theta_k}{p_k}\frac{s_k^{\rm T}y_k}{\|s_k\|^2}+(1-2\theta_k)p_k\frac{\|y_k\|^2}{s_k^{\rm T}y_k} \leq 1+\frac{L\theta_{\max}}{\underline{m}}+\frac{\overline{m}L^2}{\mu}.$
(28)

Therefore, from the Cauchy inequality, the triangle inequality, Eq. (14), Eq. (23), Eq. (24) and Eq. (28), we have

$\begin{eqnarray}\label{eq29} \|d_{k+1}\| &=& \|-\theta_kg_{k+1}+\beta_ks_k+\gamma_ky_k\|\nonumber\\ &\leq& \theta_k\|g_{k+1}\|+\frac{1}{2} \left|\frac{s_k^{\rm T}g_{k+1}}{s_k^{\rm T}y_k}\right| \|y_k\|+\frac{1}{2}\left|\frac{y_k^{\rm T}g_{k+1}}{s_k^{\rm T}y_k}\right| \|s_k\|\nonumber\\ &&+|t_k| \left|\frac{s_k^{\rm T}g_{k+1}}{s_k^{\rm T}y_k}\right| \|s_k\|\nonumber\\ &\leq& \theta_{\max}\|g_{k+1}\|+\frac{1}{2}\frac{\|g_{k+1}\|L}{\mu}+\frac{1}{2} \frac{\|g_{k+1}\|L}{\mu}\nonumber\\ &&+\left(1+\frac{L\theta_{\max}}{\underline{m}}+\frac{\overline{m}L^2}{\mu}\right) \frac{\|g_{k+1}\|}{\mu }\nonumber\\ &=& \left[\theta_{\max}+\frac{1}{\mu}\big(1+L+\frac{L\theta_{\max}}{\underline{m}}+\frac{\overline{m}L^2}{\mu}\big)\right]\|g_{k+1}\|\doteq M\|g_{k+1}\|. \end{eqnarray}$
(29)

From Lemma 2.1 and Eq. (29), we have $\frac{(g_{k+1}^{\rm T}d_{k+1})^2}{\|d_{k+1}\|^2} \geq \frac{c^2\|g_{k+1}\|^2}{M^2}.$ Combined with Lemma 3.2, we get

$\sum\limits_{k=0}^\infty \|g_k\|^2<\infty.$

The proof is completed. $\Box$

For the general nonlinear functions, we can establish a weaker convergence result

$\liminf\limits_{k\rightarrow\infty}\|g_k\|=0.$
(30)

Lemma 3.3 Suppose that Assumptions~(i) and (ii) hold. Let the sequence $\{x_k\}$ be generated by RSTTCG algorithm, then we have $d_k\neq0$ and

$\sum_{k=0}^\infty\|u_{k+1}-u_k\|^2<\infty,$
(31)

whenever $\inf\{\|g_k\|: k\geq0\}>0$, in which $u_k=\frac{d_k}{\|d_k\|}$.

Proof Define $\tau=\inf\{\|g_k\|: k\geq0\}$, we know $\|g_k\|\geq \tau>0$. From the sufficient descent condition Eq. (17), we have $d_k\neq0$ for each $k$, so $u_k$ is well defined. To prove global convergence, we define $\beta_k^{+}=\max\{\beta_k^{'},0\}$, where $\beta_k^{'}=\frac{1}{2}\frac{y_k^{\rm T}g_{k+1}}{d_k^{\rm T}y_k}-\big[ 1+\frac{\theta_k}{p_k}\frac{s_k^{\rm T}y_k}{\|s_k\|^2}+(1-2\theta_k)p_k\frac{\|y_k\|^2}{s_k^{\rm T}y_k}\big]\frac{s_k^{\rm T}g_{k+1}}{d_k^{\rm T}y_k}$. From Eq. (14), we have

$\frac{d_{k+1}}{\|d_{k+1}\|} =\frac{-\theta_kg_{k+1}}{\|d_{k+1}\|}+\beta_k^{+}\frac{d_k}{\|d_{k+1}\|}+\gamma_k\frac{y_k}{\|d_{k+1}\|}= \frac{-\theta_kg_{k+1}+\gamma_ky_k}{\|d_{k+1}\|}+\beta_k^{+}\frac{\|d_k\|}{\|d_{k+1}\|}\frac{d_k}{\|d_k\|},$

namely,

$ u_{k+1}=\omega_k+\xi_ku_k, $

where,

$\omega_k=\frac{-\theta_kg_{k+1}+\gamma_ky_k}{\|d_{k+1}\|}, \xi_k=\beta_k^{+}\frac{\|d_k\|}{\|d_{k+1}\|}\geq0.$

By using the condition $\|u_{k+1}\|=\|u_k\|=1$, we have $\|\omega_k\|=\|u_{k+1}-\xi_ku_k\|=\|\xi_ku_{k+1}-u_k\|.$ Since $\xi_k\geq0$, it follows that

$\|u_{k+1}-u_k\| \leq\|(1+\xi_k)u_{k+1}-(1+\xi_k)u_k\| \leq \|u_{k+1}-\xi_ku_k\|+\|\xi_ku_{k+1}-u_k\|=2\|\omega_k\|.$

From Eq. (16), we have

$\begin{array}{c} \left|\frac{s_k^{\rm T}g_{k+1}}{s_k^{\rm T}y_k}\right| =\left|\frac{d_k^{\rm T}g_{k+1}}{d_k^{\rm T}y_k}\right| \leq \frac{\sigma}{1-\sigma}, \| y_k\|\leq \| g_{k+1}\|+\frac{\| g_k\|}{\| g_{k+1}\|}\| g_{k+1}\|\leq 1+\frac{L_1}{\tau}\| g_{k+1}\|. \end{array}$
(32)

By the definition of $\omega_k, \gamma_k$ and Eq. (32), we get

\begin{eqnarray}\nonumber\|\omega_k\|= \frac{\|-g_{k+1}+\gamma_ky_k\|}{\|d_{k+1}\|}&\leq &\frac{\|g_{k+1}\|+\frac{1}{2}\left|\frac{s_k^{\rm T}g_{k+1}}{s_k^{\rm T}y_k}\right|\cdot\| y_k\|}{\|d_{k+1}\|}\nonumber\\&\leq &\left[1+\frac{\sigma}{2(1-\sigma)}\big(1+\frac{L_1}{\tau}\big)\right]\frac{\|g_{k+1}\|}{\|d_{k+1}\|}.\nonumber\end{eqnarray}

If $\|g_{k+1}\|>\tau$, from Lemma 2.1 and Lemma 3.2, we have

$\sum_{k=0}^\infty\frac{c^2\tau^2\|g_{k+1}\|^2}{\|d_{k+1}\|^2} \leq\sum_{k=0}^\infty\frac{c^2\|g_{k+1}\|^4}{\|d_{k+1}\|^2} \leq\sum_{k=0}^\infty\frac{(g_{k+1}^{\rm T}d_{k+1})^2}{\|d_{k+1}\|^2} <+\infty,$

therefore, Eq. (31) holds. $\Box$

Property(*) Consider a method of the form Eq. (2) and Eq. (14), and suppose

$0<\tau\leq\|g_k\|\leq\overline{\tau},~~k\geq 0.$
(33)

We call that a method has Property(*) if there exist constants $b>1$ and $\lambda>0$ such that $|\beta_k^{'}|$ and $\|s_k\|\leq \lambda~~\Rightarrow~~|\beta_k^{'}|\leq \frac{1}{2b}.$

Lemma 3.4 Suppose that Assumptions (i)-(ii) hold. Let the sequence $\{d_k\}$ be generated by RSTTCG algorithm, then RSTTCG algorithm has Property (*).

Proof From Eq. (15) and Eq. (16), we have

$d_k^{\rm T}y_k\geq(\sigma-1)g_k^{\rm T}d_k\geq c(1-\sigma)\|g_k\|^2.$
(34)

By using Assumption (i), Eqs. (32)-(34), we obtain

$\begin{eqnarray} |\beta_k^{'}| &=&\left|\frac{1}{2}\frac{y_k^{\rm T}g_{k+1}}{d_k^{\rm T}y_k}-\left(1+\frac{\theta_k}{p_k}\frac{s_k^{\rm T}y_k}{\|s_k\|^2}+(1-2\theta_k)p_k\frac{\|y_k\|^2}{s_k^{\rm T}y_k}\right)\frac{s_k^{\rm T}g_{k+1}}{d_k^{\rm T}y_k}\right|\nonumber\\ &\leq&\frac{1}{2}\frac{\|y_k\|\|g_{k+1}\|}{c(1-\sigma)\|g_k\|^2}+ \left(1+\frac{\theta_k}{p_k}\frac{s_k^{\rm T}y_k}{\|s_k\|^2}+(1-2\theta_k)p_k\frac{\|y_k\|^2}{s_k^{\rm T}y_k}\right)\frac{\|s_k\|\|g_{k+1}\|}{c(1-\sigma)\|g_k\|^2}\nonumber\\ &\leq&\frac{1}{2}\frac{\|g_{k+1}-g_k\|\|g_{k+1}\|}{c(1-\sigma)\|g_k\|^2}+ \left(1+\frac{L\theta_{\max}}{\underline{m}}+\frac{\overline{m}L^2}{\mu}\right) \frac{\|s_k\|\|g_{k+1}\|}{c(1-\sigma)\|g_k\|^2}\nonumber\\ &\leq&\frac{\overline{\tau}^2}{c(1-\sigma)\tau^2}+\left(1+\frac{L\theta_{\max}}{\underline{m}}+\frac{\overline{m}L^2}{\mu} \right)\frac{2\delta \overline{\tau}}{c(1-\sigma)\tau^2}:=b. \end{eqnarray}$
(35)

Define

$\lambda:=\displaystyle\frac{c^2(1-\sigma)^2\tau^4}{2\overline{\tau}^2\left[\overline{\tau}+(1+\frac{L\theta_{\max}}{\underline{m}}+\frac{\overline{m}L^2}{\mu} )L_1\right]\left(1+\frac{L}{2}+\frac{L\theta_{\max}}{\underline{m}}+\frac{\overline{m}L^2}{\mu} \right)},$
(36)

if $\|s_k\|\leq\lambda$, from Eq. (35) and Eq. (36), we obtain

\begin{eqnarray}|\beta_k^{'}|&\leq& \frac{1}{2}\frac{L\|s_k\|\|g_{k+1}\|}{c(1-\sigma)\tau^2}+\left(1+\frac{L\theta_{\max}}{\underline{m}}+\frac{\overline{m}L^2}{\mu} \right)\frac{\|s_k\|\|g_{k+1}\|}{c(1-\sigma)\tau^2}\nonumber\\&\leq& \left[\frac{1}{2}\frac{L\overline{\tau}}{c(1-\sigma)\tau^2}+\left(1+\frac{L\theta_{\max}}{\underline{m}}+\frac{\overline{m}L^2}{\mu} \right)\frac{\overline{\tau}}{c(1-\sigma)\tau^2}\right]\|s_k\|\nonumber\\&\leq& \left[\frac{1}{2}\frac{L\overline{\tau}}{c(1-\sigma)\tau^2}+\left(1+\frac{L\theta_{\max}}{\underline{m}}+\frac{\overline{m}L^2}{\mu} \right)\frac{\overline{\tau}}{c(1-\sigma)\tau^2}\right]\lambda=\frac{1}{2b}.\nonumber~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\hfill\Box\end{eqnarray}

We will show that if the gradient sequence is bounded away from zero, then a fraction of the steps cannot be too small in next lemma. Let $\mathbb{N}$ be the set of positive integers, $K^{\lambda}:=\{i\in \mathbb{N}: i\geq1,\|s_{i}\|>\lambda\},~~\mbox{for}~~ \lambda>0,$ namely, the set of integers corresponding to steps greater than $\lambda$. Here, we need to discuss groups of $\triangle$ consecutive iterates and let $K_{k,\Delta}^{\lambda}:=\{i\in \mathbb{N}: k\leq i\leq k+\Delta-1, \|s_i\|>\lambda\},$ where $|K_{k,\Delta}^{\lambda}|$ denotes the number of elements of $K_{k,\Delta}^{\lambda}$.

Lemma 3.5 Suppose that Assumptions (i)-(ii) hold. Let the sequences $\{x_k\}$ and $\{d_k\}$ be generated by RSTTCG algorithm. When Eq. (33) holds, there exists $\lambda>0$ such that

$\left|K_{k,\Delta}^{\lambda}\right|>\frac{\Delta}{2},~~\mbox{for}~~\Delta\in \mathbb{N},$

where,

$k\geq k_0$, in which $k_0$ is any index.

Proof Suppose on the contrary that there exists $\lambda>0$ such that $\left|K_{k,\Delta}^{\lambda}\right| \leq\displaystyle\ \frac{\Delta}{2}$ for $\Delta\in \mathbb{N}$ and for any $k\geq k_0$. By Eq. (32), we have

$\|\gamma_ky_k\| =\frac{1}{2}\left|\frac{s_k^{\rm T}g_{k+1}}{s_k^{\rm T}y_k}\right|\|y_k\| \leq \frac{\sigma}{4(1-\sigma)}\big(1+\frac{L_1}{\tau}\big)\|g_{k+1}\|\doteq L_2\|g_{k+1}\|.$

According to the definition of Eq. (14), we have

$\begin{eqnarray}\nonumber\|d_{k+1}\|^2&\leq& \left(\beta_k^{'}\|d_k\|+\|-g_{k+1}+\gamma_ky_k\|\right)^2\leq 2\beta_k^{'2}\|d_k\|^2+2\|-g_{k+1}+\gamma_ky_k\|^2 \nonumber\\&\leq& 2\beta_k^{'2}\|d_k\|^2+2(2\|g_{k+1}\|^2+2\|\gamma_ky_k\|^2)\leq 2\beta_k^{'2}\|d_k\|^2+4\big(1+L_2^2\big)\|g_{k+1}\|^2,\nonumber\end{eqnarray}$

the above inequalities are established based on $2ab\leq a^2+b^2$ for any scalars $a$ and $b$, so $(a+b)^2\leq 2a^2+2b^2$. By induction, we have

$\|d_l\|^2\leq c_1\left(1+2\beta_{l-1}^{'2}+2\beta_{l-1}^{'2} 2\beta_{l-2}^{'2}+\cdots+2\beta_{l-1}^{'2} 2a\beta_{l-2}^{'2}\cdots2\beta_{k_0}^{'2}\right),$
(37)

for any given index $l\geq k_0+1$, where $c_1$ depends on $\|d_{k_0-1}\|$, not depends on $l$. Next, we consider $2\beta_{l-1}^{'2} 2\beta_{l-2}^{'2}\cdots2\beta_{k}^{'2},$ where $k_0\leq k\leq l-1$. We divide the $2(l-k)$ factors of Eq. (37) into groups of each $2\Delta$ elements, namely, if $\Lambda:=(l-k)/\Delta$, then Eq. (37) can be divided into $\Lambda$ or $\Lambda+1$ groups

$(2\beta_{l_1}^{'2}\cdots2a\beta_{k_1}^{'2}), \cdots, (2\beta_{l_\Lambda}^{'2}\cdots2\beta_{k_\Lambda}^{'2}),$
(38)

and a possible group

$(2\beta_{l_\Lambda+1}^{'2}\cdots2\beta_{k}^{'2}),$
(39)

where,

$l_i=l-1-(i-1)\Delta$ for $i=1,2,\cdots,\Lambda+1$, and $k_i=l_{i+1}+1$ for $i=1,2,\cdots,\Lambda$. It is clear that $k_i\geq k_0$ for $i=1, 2, \cdots, \Lambda$, from assumption condition, we get $q_i:=\left|K_{k_i,\Delta}^\lambda\right|\leq\frac{\Delta}{2}.$ Thus, there are $q_i$ indices $j$ such that $\|s_j\|>\lambda$ and $(\Delta-q_i)$ indices $j$ such that $\|s_j\|\leq\lambda$ on $[k_i, k_i+\Delta-1]$.

From Eq. (35), we have $b > \frac{\overline{\tau}^2}{c(1-\sigma)\tau^2} >1$, i.e., $2b^2 >1$. In conjunction with $2q_i-\Delta\leq 0$, we have $2\beta_{l_i}^{'2}\cdots2a\beta_{k_i}^{'2}\leq 2^\Delta b^{2q_i}(\frac{1}{2b})^{2(\Delta-q_i)}=(2b^2)^{2q_i-\Delta} \leq 1.$ So every item in Eq. (38) is less than or equal to 1, and so is their product. In Eq. (39), we have $2\beta_{l_{\Lambda+1}}^{'2}\cdots2\beta_{k}^{'2}\leq(2b^2)^\Delta$. Then, we get

$\|d_l\|^2\leq c_2(l-k_0+2),$

where,

$c_2>0$ and independent of $l$. Furthermore, $\sum\limits_{k\geq0}\frac{1}{\|d_k\|^2}=\infty.$ But from sufficient condition Eq. (17), Zoutendijk condition Eq. (21) and Eq. (33), we have

$c^2\tau^4\sum_{k\geq0}\frac{1}{\|d_k\|^2}\leq c^2\sum_{k\geq0}\frac{\|g_k\|^4}{\|d_k\|^2}\leq\sum_{k\geq0}\frac{(g_k^{\rm T}d_k)^2}{\|d_k\|^2}<\infty.$

It leads to a contradiction. The proof is completed. $\Box$

Theorem 3.2 Suppose that Assumptions (i)-(ii) hold. Let the sequence $\{x_k\}$ be generated by RSTTCG algorithm, then Eq. (30) holds.

Proof Suppose on the contrary that we can get a contradiction similarly to Theorem 4.3 in the study [19]. $\Box$

4. Numerical Results

In this section, the numerical performance of RSTTCG algorithm will be listed. All experiments were done on a PC with CPU 2.40 GHz and 2.00 GB RAM using Matlab R2015b.

4.1 Normal Unconstrained Optimization Problems

Two classes of test problems are selected here which are listed in Table 1. One class is drawn from the CUTEr library [20], and the other class come from Andrei [13]. A total of twenty-eight test functions with eighty problems from different dimensions are considered.

Table 1. List of the test functions, dimensions, and initial points.

P.

Functions

Dim.

P.

Functions

Dim.

1

Freudenstein and Roth

2

41

Chebyquad

1000

2

Powell badly scaled

2

42

Chebyquad

5000

3

Brown badly scaled

2

43

Chebyquad

10000

4

Beale

2

44

Chebyquad

50000

5

Helical valley

3

45

Broyden banded

1000

6

Wood

4

46

Broyden banded

5000

7

Biggs EXP6

6

47

Broyden banded

10000

8

Extended Rosenbrock

1000

48

Broyden banded

50000

9

Extended Rosenbrock

5000

49

Generalized Rosebrock

1000

10

Extended Rosenbrock

10000

50

Generalized Rosebrock

5000

11

Extended Rosenbrock

50000

51

Generalized Rosebrock

10000

12

Extended Powell singular

1000

52

Generalized Rosebrock

50000

13

Extended Powell singular

5000

53

Boundary value

1000

14

Extended Powell singular

10000

54

Boundary value

5000

15

Extended Powell singular

50000

55

Boundary value

10000

16

Penalty function I

1000

56

Boundary value

50000

17

Penalty function I

5000

57

Integral equation

1000

18

Penalty function I

10000

58

Integral equation

5000

19

Penalty function II

1000

59

Integral equation

10000

20

Penalty function II

5000

60

Integral equation

50000

21

Penalty function II

10000

61

Broyden tridiagonal

1000

22

Gaussian

3

62

Broyden tridiagonal

5000

23

Gaussian

3

63

Broyden tridiagonal

10000

24

Box

3

64

Broyden tridiagonal

50000

25

Box

3

65

Separable cubic

1000

26

Variable dimension

1000

66

Separable cubic

5000

27

Variable dimension

5000

67

Separable cubic

10000

28

Variable dimension

10000

68

Separable cubic

50000

29

Variable dimension

50000

69

Nearly separable

1000

30

Watson

1000

70

Nearly separable

5000

31

Watson

5000

71

Nearly separable

10000

32

Watson

10000

72

Nearly separable

50000

33

Watson

50000

73

Yang tridiagonal

1000

34

Brown and Dennis

4

74

Yang tridiagonal

5000

35

Brown and Dennis

4

75

Yang tridiagonal

10000

36

Trigonometric

500

76

Allgower

1000

37

Trigonometric

1000

77

Allgower

5000

38

Trigonometric

5000

78

Allgower

10000

39

Trigonometric

10000

79

Schittkowski 302

5000

40

Trigonometric

50000

80

Schittkowski 302

10000

We compare RSTTCG algorithm against DDL method [11] which possess better numerical performance. When

$\theta_k=\max \left\{\frac{1-\underline{m}}{2(1-\overline{m})}, \frac{\|s_k\|^2}{s_k^{\rm T}y_k}\right\}~ \mbox {and} ~ \theta_k=\max \left\{\frac{1-\underline{m}}{2(1-\overline{m})}, \frac{s_k^{\rm T}y_k}{\|y_k\|^2}\right\}$

are chosen, RSTTCG Algorithm are denoted by ``RSTTCG1" and ``RSTTCG2", respectively. All test methods are terminated when satisfies condition

$\begin{align} \|g_k\|\leq\varepsilon~~{\rm or}~~ \mbox{the number of iterations exceeds 1000}. \end{align}$
(40)

We set parameter as $\varepsilon=10^{-5}$, $\rho=0.1$, $\sigma=0.6, \underline{m}=0.05, \overline{m}=0.45$. And we set $p=0.8$ and $q=0.1$ in DDL algorithm.

The performance profile of four algorithms, included number of iterations, function evaluations, gradient evaluations and CPU time, was analyzed using the profiles of Dolan and Mor$\acute{\rm e}$ [21]. In a performance profile plot, the horizontal axis gives the percentage $(\tau)$ of the test problems for which a method is the fastest (efficiency), while the vertical side gives the percentage $(\psi)$ of the test problems that are successfully solved by each of the methods.

Please do not use the headers or the footers because they are reserved for the technical editing by editors. If necessary, explain the concepts in a table or figure by adding a note below that table or figure.

Figure 1, Figure 2, Figure 3, Figure 4 plot the performance profiles for the number of iterations, the number of function evaluations, the number of gradient evaluations, and the CPU time, respectively. As can be observed in Figure 1, Figure 2, Figure 3, Figure 4, the curves corresponding to RSTTCG1 stays others curves representing RSTTCG2 and DDL methods. This indicates that RSTTCG1 outperforms RSTTCG2 and DDL in all aspects. Furthermore, when $\tau<2$, the performance of RSTTCG1 is slightly better than RSTTCG2. Whereas, when $\tau \geq 2$, the performance of RSTTCG2 is slightly better than RSTTCG1. We deem that RSTTCG1 may be more competitive than RSTTCG2.

Figure 1. The number of iterations
Figure 2. The number of function evaluations
Figure 3. The number of gradient evaluations
Figure 4. CPU time
4.2 Fresh Agricultural Products Supply Chain Optimization Problems

In this section, we use RSTTCG algorithm to study the profit-maximization pricing strategy of supply chain of fresh agricultural products led by suppliers under centralized decision making. Consider a two-level fresh produce supply chain in a single-cycle production-sales mode composed of a single fresh produce supplier and a single retailer. The fresh produce supplier, as the leader of the Stackeblerg game, supplies both ordinary fresh produce (ofp) and green fresh produce (gfp) of the same variety to the retailer as the follower. Fresh agricultural products supply chain (FPSC) system the overall decision-making structure is shown in Figure 5.

Figure 5. FPSC operation flow chart

Because these two kinds of fresh products are substitutable, there is competition in the demand market, based on the demand function theory of substitute price competition, the demand function of two fresh agricultural products is assumed as follows

$q_i=a-b\frac{p_i}{\theta}+r\frac{p_j}{\theta}, i=1,2, j=3-i,$
(41)

where,

$q_1$, $q_2$ represent the market demand of gfp and ofp, respectively, $a$ represents the total potential market capacity of fresh agricultural products, $p_1$, $p_2$ represent the retail price of gfp and ofp, respectively, $b$ is the price sensitivity coefficient, $r$ is the competitive substitution coefficient of the two products, and satisfy $b>r>0$, $\theta (0\leq\theta\leq 1)$ is the freshness of fresh produce when it arrives at the retailer’s store. In centralized decision-making, we regard suppliers and retailers as subjects with identical interests, and both sides cooperate to maximize FPSC profits.

Now, under the establishment of centralized decision, the profit function of fresh agricultural products supply chain is as follows

$\max_{p_1,p_2}\pi^{c}=(p_1-\frac{c_1}{1-\beta})(a-b\frac{p_1}{\theta}+r\frac{p_2}{\theta})+(p_2-\frac{c_2}{1-\beta})(a-b\frac{p_2}{\theta}+r\frac{p_1}{\theta}),$
(42)

where,

$\beta$ $(0<\beta<1)$ represents the quantity loss of fresh produce when it reaches the retailer’s store. $c_1$, $c_2$ represents the unit production cost of gfp and ofp, respectively. Obviously, $p_1>p_1>0$ and $c_1>c_2>0$. We transform Eq. (42) into the following optimization problem

$\min_{p_1,p_2}\pi^{c}=-(p_1-\frac{c_1}{1-\beta})(a-b\frac{p_1}{\theta}+r\frac{p_2}{\theta})-(p_2-\frac{c_2}{1-\beta})(a-b\frac{p_2}{\theta}+r\frac{p_1}{\theta}).$
(43)

With reference to the setting of the parameters in the relevant literature [22], we set: $a=50$, $b=2$, $c_1=4$, $c_2=2$, $r=1.5$, $\beta=0.2$, $\theta=0.85$. These values satisfy the theoretical proof in reference [22] and can guarantee that the optimal value has practical significance. We choose different initial points and use RSTTCG algorithm to solve the optimization problem Eq. (43), the results are shown in Table 2 and Table 3. In Table 2 and Table 3, $k$ represents the number of iterations.

Table 2. The optimal solution corresponding to different initial points by RSTTCG1

Initial Point

$k$

$p_1^{*}$

$p_2^{*}$

$q_1^{*}$

$q_2^{*}$

$\pi^{*}$

(1;1)

7

45.0265

43.7651

21.2879

26.4818

1.9449×10³

(10;10)

6

44.9792

43.7150

21.3107

26.5163

1.9449×10³

(30;30)

8

44.9970

43.7427

21.3177

26.4825

1.9449×10³

(50;50)

6

45.0255

43.7949

21.3427

26.4100

1.9449×10³

(100;100)

7

44.9776

43.7113

21.3079

26.5222

1.9449×10³

(1000;1000)

6

44.9809

43.7130

21.3033

26.5238

1.9449×10⁶

Table 3. The optimal solution corresponding to different initial points by RSTTCG2

Initial Point

$k$

$p_1^{**}$

$p_2^{**}$

$q_1^{**}$

$q_2^{**}$

$\pi^{**}$

(1;1)

7

44.9459

43.6127

21.2085

26.6981

1.9448×10³

(10;10)

5

44.9491

43.7202

21.3907

26.4509

1.9449×10³

(30;30)

6

45.0035

43.7488

21.3132

26.4796

1.9449×10³

(50;50)

6

45.0234

43.7905

21.3400

26.4165

1.9449×10³

(100;100)

6

45.0273

43.7657

21.2870

26.4818

1.9449×10³

(1000;1000)

5

45.0032

43.7530

21.3213

26.4692

1.9449×10⁶

As can be seen from Table 2 and Table 3, with certain parameters, RSTTCG algorithm can be used to solve the optimization problem, so as to obtain the optimal pricing strategy with maximum profit in the supply chain led by suppliers under centralized decision making. In addition, the global convergence and effectiveness of RSTTCG algorithm are verified according to different initial values and the number of iterations.

5. Conclusion

In this paper, based on the random technique and a new search direction, a class of spectral three-term spectral three-term CG methods with random parameters are proposed. The random parameters are introduced to simplify the derived parameter. This is achieved by minimizing distance between the symmetric matrix $A_{k+1}$ and memoryless BFGS matrix in Frobenius norm. Global convergence of new algorithm is proved for uniformly convex functions and general nonlinear functions. Some classical test problems are selected for numerical experiments and compared with other methods to verify the effectiveness of proposed algorithm. Numerical experiments show that our methods have nice numerical performance, more relaxed and elastic.

Funding
This work is funded by the Key Project of Natural Science Foundation Joint Fund of Jilin Province (Grant No.: YDZJ202201ZYTS303).
Data Availability

The data used to support the research findings are available from the corresponding author upon request.

Conflicts of Interest

The authors declare no conflict of interest.

References
1.
A. B. Abubakar, K. Muangchoo, A. M. Abubakar, and A. H. Ibrahim, “A spectral gradient projection method for sparse signal reconstruction in compressive sensing,” Mod. Appl. Sci., vol. 14, no. 5, pp. 86–93, 2020. [Google Scholar] [Crossref]
2.
S. Devila, M. Malik, and W. Giyarti, “A new hybrid PRP-MMSIS conjugate gradient method and its application in portfolio selection,” J. Ris. Apl. Mat., vol. 5, no. 1, pp. 47–59, 2021. [Google Scholar] [Crossref]
3.
A. H. Ibrahim, J. Deepho, A. B. Abubakar, and A. Adamu, “A three-term Polak-Ribiere-Polyak derivative-free method and its application to image restoration,” Sci. Afr., vol. 13, p. e00880, 2021. [Google Scholar] [Crossref]
4.
W. Hu, J. Wu, and G. Yuan, “Some modified Hestenes-Stiefel conjugate gradient algorithms with application in image restoration,” Appl. Numer. Math., vol. 158, pp. 360–376, 2020. [Google Scholar] [Crossref]
5.
E. G. Birgin and J. M. Martnez, “A spectral conjugate gradient method for unconstrained optimization,” Appl. Math. Optim., vol. 43, no. 2, pp. 117–128, 2001. [Google Scholar] [Crossref]
6.
Z. X. Liu, Y. Ni, H. W. Liu, and W. M. Sun, “A new subspace minimization conjugate gradient method for unconstrained minimization,” J. Optim. Theo. Appl., vol. 200, pp. 820–851, 2024. [Google Scholar] [Crossref]
7.
N. Salihu, P. Kumam, and S. Salisu, “Two efficient nonlinear conjugate gradient methods for Riemannian manifolds,” Comput. Appl. Math., vol. 43, p. 415, 2024. [Google Scholar] [Crossref]
8.
S. Yao and L. Ning, “An adaptive three-term conjugate gradient method based on self-scaling memoryless BFGS matrix,” J. Comput. Appl. Math., vol. 332, pp. 72–85, 2018. [Google Scholar] [Crossref]
9.
L. Wang, M. Cao, F. Xing, and Y. Yang, “The new spectral conjugate gradient method for large-scale unconstrained optimisation,” J. Inequal. Appl., vol. 2020, no. 1, pp. 1–11, 2020. [Google Scholar] [Crossref]
10.
P. Faramarzi and K. Amini, “A modified spectral conjugate gradient method with global convergence,” J. Optim. Theory Appl., vol. 182, pp. 667–690, 2019. [Google Scholar] [Crossref]
11.
S. Babaie-Kafaki and R. Ghanbari, “A descent family of Dai-Liao conjugate gradient methods,” Optim. Methods Softw., vol. 29, no. 3, pp. 583–591, 2014. [Google Scholar] [Crossref]
12.
I. E. Livieris, V. Tampakas, and P. Pintelas, “A descent hybrid conjugate gradient method based on the memoryless BFGS update,” Numer. Algorithms, vol. 79, pp. 1169–1185, 2018. [Google Scholar] [Crossref]
13.
N. Andrei, “Three-term conjugate gradient methods,” in Nonlinear Conjugate Gradient Methods for Unconstrained Optimization, Cham, Switzerland: Springer, 2020, pp. 311–347. [Google Scholar] [Crossref]
14.
Y. Chen and Y. Yang, “A three-term conjugate gradient algorithm using subspace for large-scale unconstrained optimization,” Commun. Math. Sci., vol. 18, no. 5, pp. 1179–1190, 2020. [Google Scholar] [Crossref]
15.
P. Faramarzi and K. Amini, “A spectral three-term Hestenes-Stiefel conjugate gradient method,” 4OR, vol. 19, pp. 71–92, 2021. [Google Scholar] [Crossref]
16.
A. Y. Al-Bayati and S. Abbas, “A robust spectral three-term conjugate gradient algorithm for solving unconstrained minimization,” AL-Rafidain J. Comput. Sci. Math., vol. 13, no. 1, pp. 87–104, 2019. [Google Scholar] [Crossref]
17.
M. R. Eslahchi and S. Bojari, “Global convergence of a new sufficient descent spectral three-term conjugate gradient class for large-scale optimization,” Optim. Methods Softw., vol. 37, no. 3, pp. 830–843, 2020. [Google Scholar] [Crossref]
18.
Y.-X. Yuan and J. Stoer, “A subspace study on conjugate gradient algorithms,” J. Appl. Math. Mech., vol. 75, no. 1, pp. 69–77, 1995. [Google Scholar] [Crossref]
19.
J. C. Gilbert and J. Nocedal, “Global convergence properties of conjugate gradient methods for optimization,” SIAM J. Optim., vol. 2, no. 1, pp. 21–42, 1992. [Google Scholar] [Crossref]
20.
N. I. Gould, D. Orban, and P. L. Toint, “CUTEr and SifDec: A constrained and unconstrained testing environment, revisited,” ACM Trans. Math. Softw., vol. 29, no. 4, pp. 373–394, 2003. [Google Scholar] [Crossref]
21.
E. D. Dolan and J. J. Moré, “Benchmarking optimization software with performance profiles,” Math. Program., vol. 91, pp. 201–213, 2002. [Google Scholar] [Crossref]
22.
Y. T. Li, C. Q. Tan, W. H. Ip, and C. H. Wu, “Dynamic blockchain adoption for freshness-keeping in the fresh agricultural product supply chain,” Expert Syst. Appl., vol. 217, p. 119494, 2023. [Google Scholar] [Crossref]

Cite this:
APA Style
IEEE Style
BibTex Style
MLA Style
Chicago Style
GB-T-7714-2015
Cao, M. Y., Liu, S. Q., Mei, R. B., Li, Z. X., & Yang, Y. T. (2024). A New Spectral Three-Term Conjugate Gradient Method for Unconstrained Optimization and Its Application. Acadlore Trans. Appl Math. Stat., 2(4), 252-264. https://doi.org/10.56578/atams020405
M. Y. Cao, S. Q. Liu, R. B. Mei, Z. X. Li, and Y. T. Yang, "A New Spectral Three-Term Conjugate Gradient Method for Unconstrained Optimization and Its Application," Acadlore Trans. Appl Math. Stat., vol. 2, no. 4, pp. 252-264, 2024. https://doi.org/10.56578/atams020405
@research-article{Cao2024ANS,
title={A New Spectral Three-Term Conjugate Gradient Method for Unconstrained Optimization and Its Application},
author={Mingyuan Cao and Siqi Liu and Ruobing Mei and Zongxu Li and Yueting Yang},
journal={Acadlore Transactions on Applied Mathematics and Statistics},
year={2024},
page={252-264},
doi={https://doi.org/10.56578/atams020405}
}
Mingyuan Cao, et al. "A New Spectral Three-Term Conjugate Gradient Method for Unconstrained Optimization and Its Application." Acadlore Transactions on Applied Mathematics and Statistics, v 2, pp 252-264. doi: https://doi.org/10.56578/atams020405
Mingyuan Cao, Siqi Liu, Ruobing Mei, Zongxu Li and Yueting Yang. "A New Spectral Three-Term Conjugate Gradient Method for Unconstrained Optimization and Its Application." Acadlore Transactions on Applied Mathematics and Statistics, 2, (2024): 252-264. doi: https://doi.org/10.56578/atams020405
CAO M Y, LIU S Q, MEI R B, et al. A New Spectral Three-Term Conjugate Gradient Method for Unconstrained Optimization and Its Application[J]. Acadlore Transactions on Applied Mathematics and Statistics, 2024, 2(4): 252-264. https://doi.org/10.56578/atams020405
cc
©2024 by the author(s). Published by Acadlore Publishing Services Limited, Hong Kong. This article is available for free download and can be reused and cited, provided that the original published version is credited, under the CC BY 4.0 license.