K. T. Atanassov, “Intuitionistic fuzzy sets,” Fuzzy Sets Syst., vol. 20, no. 1, pp. 87–96, 1986. [Google Scholar][Crossref]
3.
R. R. Yager, “Pythagorean fuzzy subsets,” in 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), Edmonton, AB, Canada, 2013. [Google Scholar][Crossref]
4.
R. R. Yager, “Generalized orthopair fuzzy sets,” IEEE Trans. Fuzzy Syst., vol. 25, no. 5, pp. 1222–1230, 2017. [Google Scholar][Crossref]
5.
B. C. Cuong, “Picture fuzzy sets,” J. Comput. Sci. Cybern., vol. 30, no. 4, 2015. [Google Scholar][Crossref]
6.
T. Mahmood, K. Ullah, Q. Khan, and N. Jan, “An approach toward decision-making and medical diagnosis problems using the concept of spherical fuzzy sets,” Neural Comput. Appl., vol. 31, no. 11, pp. 7041–7053, 2018. [Google Scholar][Crossref]
7.
K. Ullah, N. Hassan, T. Mahmood, N. Jan, and M. Hassan, “Evaluation of Investment policy based on multi-attribute decision-making using interval valued t-spherical fuzzy aggregation operators,” Symmetry, vol. 11, no. 3, p. 357, 2019. [Google Scholar][Crossref]
8.
E. Helmers and M. Weiss, “Advances and critical aspects in the life-cycle assessment of battery electric cars,” Energy Emission Control Technol., vol. 5, pp. 1–18, 2017. [Google Scholar][Crossref]
9.
E. Helmers, J. Dietz, and S. Hartard, “Electric car life cycle assessment based on real-world mileage and the electric conversion scenario,” Int. J. Life Cycle Assess, vol. 22, no. 1, pp. 15–30, 2015. [Google Scholar][Crossref]
10.
A. Lundström and F. Hellström, “Getting to know electric cars through an app,” in Proceedings of the 7th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Nottingham, UK, 2015, pp. 289–296. [Google Scholar][Crossref]
11.
O. Stopka, M. Stopkova, and J. Pečman, “Application of multi-criteria decision making methods for evaluation of selected passenger electric cars: A case study,” Commun. Sci. Lett. Univ. Zilina, vol. 24, pp. 133–141, 2022. [Google Scholar]
12.
M. Bartłomiejczyk, L. Jarzebowicz, and R. Hrbáč, “Application of traction supply system for charging electric cars,” Energies, vol. 15, no. 4, p. 1448, 2022. [Google Scholar][Crossref]
13.
S. Vitta, “Electric cars—Assessment of ‘green’ nature vis-à-vis conventional fuel driven cars,” Sustainable Mater. Technol., vol. 30, p. e00339, 2021. [Google Scholar][Crossref]
14.
J. Wieckowski, J. Wątróbski, B. Kizielewicz, and W. Sałabun, “Complex sensitivity analysis in Multi-Criteria Decision Analysis: An application to the selection of an electric car,” J. Cleaner Prod., vol. 390, p. 136051, 2023. [Google Scholar][Crossref]
15.
N. C. Onat, M. Kucukvar, O. Tatari, and Q. P. Zheng, “Combined application of multi-criteria optimization and life-cycle sustainability assessment for optimal distribution of alternative passenger cars in U.S.,” J. Cleaner Prod., vol. 112, pp. 291–307, 2016. [Google Scholar][Crossref]
16.
M. C. H. Lim, G. A. Ayoko, L. Morawska, Z. D. Ristovski, E. R. Jayaratne, and S. Kokot, “A comparative study of the elemental composition of the exhaust emissions of cars powered by liquefied petroleum gas and unleaded petrol,” Atmos. Environ., vol. 40, no. 17, pp. 3111–3122, 2006. [Google Scholar][Crossref]
17.
X. Hao, X. Zhang, X. Cao, X. Shen, J. Shi, and Z. Yao, “Characterization and carcinogenic risk assessment of polycyclic aromatic and nitro-polycyclic aromatic hydrocarbons in exhaust emission from gasoline passenger cars using on-road measurements in Beijing, China,” Sci. Total Environ., vol. 645, pp. 347–355, 2018. [Google Scholar][Crossref]
18.
M. Sarfraz, K. Ullah, M. Akram, D. Pamucar, and D. Božanić, “Prioritized aggregation operators for intuitionistic fuzzy information based on aczel-alsina t-norm and t-conorm and their applications in group decision-making,” Symmetry, vol. 14, no. 12, p. 2655, 2022. [Google Scholar][Crossref]
19.
K. Ullah, M. Sarfraz, M. Akram, and Z. Ali, “Identification and classification of prioritized aczel-alsina aggregation operators based on complex intuitionistic fuzzy information and their applications in decision-making problem,” in Fuzzy Optimization, Decision-Making and Operations Research, Springer, Cham, 2023, pp. 377–398. [Google Scholar][Crossref]
20.
M. Sarfraz, “Application of interval-valued t-spherical fuzzy dombi hamy mean operators in the antiviral mask selection against COVID-19,” J. Decis. Anal. Intell. Comput., vol. 4, no. 1, 2024. [Google Scholar][Crossref]
21.
M. Radovanović, A. Petrovski, E. Cirkin, A. Behlić, Ž. Jokić, D. Chemezov, E. G. Hashimov, M. B. Bouraima, and C. Jana, “Application of the new hybrid model LMAW-G-EDAS multi-criteria decision-making when choosing an assault rifle for the needs of the army,” J. Decis. Anal. Intell. Comput., vol. 4, no. 1, pp. 16–31, 2024. [Google Scholar][Crossref]
22.
J. C. Radcliffe, “Current status of recycled water for agricultural irrigation in Australia, potential opportunities and areas of emerging concern,” Sci. Total Environ., vol. 807, p. 151676, 2022. [Google Scholar][Crossref]
23.
J. C. Radcliffe and D. Page, “Water reuse and recycling in Australia—History, current situation and future perspectives,” Water Cycle, vol. 1, pp. 19–40, 2020. [Google Scholar][Crossref]
24.
B. Posetti, A. Hurlimann, A. Tkaczynski, M. Randle, and S. Dolnicar, “Delivery or desirability of benefits? Predicting the effectiveness of egoistic and altruistic message appeals for recycled water use,” Australas. J. Environ. Manage., vol. 29, no. 2, pp. 200–217, 2022. [Google Scholar][Crossref]
25.
R. B. Chalmers, M. Tremblay, and R. Soni, “A new water source for Southern California: the regional recycled water program,” J. Am. Water Works Assoc., vol. 112, no. 12, pp. 68–75, 2020. [Google Scholar][Crossref]
26.
C. Tortajada, “Contributions of recycled wastewater to clean water and sanitation sustainable development goals,” Clean Water, vol. 3, no. 1, p. 22, 2020. [Google Scholar][Crossref]
27.
M. Sarfraz, “Multi-attribute decision-making for t-spherical fuzzy information utilizing Schweizer-Sklar prioritized aggregation operators for recycledwater,” Decis. Making Adv., vol. 2, no. 1, pp. 105–128, 2024. [Google Scholar][Crossref]
28.
A. Ghodousian, A. Ahmadi, and A. Dehghani, “Solving a non-convex non-linear optimization problem constrained by fuzzy relational equations and Sugeno-Weber family of t-norms,” J. Algorithms Comput., vol. 49, no. 2, pp. 63–101, 2017. [Google Scholar][Crossref]
29.
M. Kauers, V. Pillwein, and S. Saminger-Platz, “Dominance in the family of Sugeno-Weber t-norms,” Fuzzy Sets Syst., vol. 181, no. 1, pp. 74–87, 2011. [Google Scholar][Crossref]
30.
A. Sarkar, T. Senapati, L. Jin, R. Mesiar, A. Biswas, and R. R. Yager, “Sugeno-Weber triangular norm-based aggregation operators under t-spherical fuzzy hypersoft context,” Inf. Sci., p. 119305, 2023. [Google Scholar]
31.
F. Farahbod, “Comparison of Different t-norm operators in classification problems,” Int. J. Fuzzy Logic Syst., vol. 2, no. 3, pp. 33–39, 2012. [Google Scholar][Crossref]
32.
L. Troiano, L. J. Rodríguez-Muñiz, P. Marinaro, and I. Díaz, “Statistical analysis of parametric t-norms,” Inf. Sci., vol. 257, pp. 138–162, 2014. [Google Scholar][Crossref]
33.
A. Ghodousian, “Optimization of linear problems subjected to the intersection of two fuzzy relational inequalities defined by Dubois-Prade family of t-norms,” Inf. Sci., vol. 503, pp. 291–306, 2019. [Google Scholar][Crossref]
34.
S. Saminger-Platz, B. De Baets, and H. De Meyer, “Differential inequality conditions for dominance between continuous Archimedean t-norms,” Math. Inequalities Appl., vol. 12, no. 1, pp. 191–208, 2009. [Google Scholar]
35.
D. Pamucar, D. Lazarević, M. Dobrodolac, V. Simic, and Ö. F. Görçün, “Prioritization of crowdsourcing models for last-mile delivery using fuzzy Sugeno–Weber framework,” Eng. Appl. Artif. Intell., vol. 128, p. 107414, 2024. [Google Scholar][Crossref]
36.
A. Ghodousian, M. Naeeimi, and A. Babalhavaeji, “Nonlinear optimization problem subjected to fuzzy relational equations defined by Dubois-Prade family of t-norms,” Comput. Ind. Eng., vol. 119, pp. 167–180, 2018. [Google Scholar][Crossref]
37.
O. Hadzic, E. Pap, and M. Budinčević, “Countable extension of triangular norms and their applications to the fixed point theory in probabilistic metric spaces,” Kybernetika, vol. 38, no. 3, pp. 363–382, 2002. [Google Scholar]
38.
S. Ashraf, M. Akram, C. Jana, L. Jin, and D. Pamucar, “Multi-criteria assessment of climate change due to green house effect based on Sugeno Weber model under spherical fuzzy Z-numbers,” Inf. Sci., vol. 666, p. 120428, 2024. [Google Scholar][Crossref]
39.
S. Ashraf, W. Iqbal, S. Ahmad, and F. Khan, “Circular spherical fuzzy SugenoWeber aggregation operators: A novel uncertain approach for adaption a programming language for social media platform,” IEEE Access, vol. 11, pp. 124920–124941, 2023. [Google Scholar][Crossref]