S. French, “Reflections on 50 years of MCDM: Issues and future research needs,” EURO J. Decis. Process., vol. 11, p. 100030, 2023. [Google Scholar][Crossref]
2.
M. D. Francis, I. Abi-Zeid, E. Waygood, and R. Lavoie, “A review of cost–benefit analysis and multicriteria decision analysis from the perspective of sustainable transport in project evaluation,” EURO J. Decis. Process., vol. 7, no. 3, pp. 327–358, 2019. [Google Scholar][Crossref]
3.
M. Sousa, M. F. Almeida, and R. Calili, “Multiple criteria decision making for the achievement of the un sustainable development goals: A systematic literature review and a research agenda,” Sustainability (Switzerland), vol. 13, no. 8, p. 4129, 2021. [Google Scholar][Crossref]
4.
X. Yu, S. Zhang, X. Liao, and X. Qi, “ELECTRE methods in prioritized MCDM environment,” Inf. Sci., vol. 424, pp. 301–316, 2018. [Google Scholar][Crossref]
5.
C. L. Hwang and K. Yoon, “Methods for multiple attribute decision making,” in Multiple Attribute Decision Making: Methods and Applications a State-of-the-Art Survey, Springer, 1981. [Google Scholar]
6.
M. E. Banihabib, F. Hashemi-madani, and A. Forghani, “Comparison of compensatory and non- compensatory multi criteria decision making models in water resources strategic management,” Water Resour. Manag., vol. 31, no. 12, pp. 3745–3759, 2017. [Google Scholar][Crossref]
7.
K. F. B. Maracajá, V. B. Schramm, F. Schramm, V. Valduga, and J. R. Trindade, “Application of MCDM using PROMETHEE II for evaluation of wine tourism services,” Int. J. Wine Bus. Res., vol. 35, no. 3, pp. 427–444, 2023. [Google Scholar][Crossref]
8.
T. Saaty, “The analytic hierarchy process (AHP) for decision making,” in Kobe, Japan, 1980. [Google Scholar]
9.
B. Roy, “Classement et choix en présence de points de vue multiples,” Rev. Franc¸. Inform. Rech. Opér., vol. 2, no. 8, pp. 57–75, 1968. [Google Scholar][Crossref]
10.
B. Jean-Pierre, “L’ingénièrie de la décision; Elaboration d’instruments d’aide à la décision. La méthode PROMETHEE,” in L’aide à la Décision: Nature, Instruments et Perspectives d’Avenir, Presses de l’Université Laval, 1982. [Google Scholar]
11.
H. C. Liu, X. Q. Chen, C. Y. Duan, and Y. M. Wang, “Failure mode and effect analysis using multi-criteria decision making methods: A systematic literature review,” Comput. Ind. Eng., vol. 135, pp. 881–897, 2019. [Google Scholar][Crossref]
12.
S. L. Gebre, D. Cattrysse, E. Alemayehu, and J. Van Orshoven, “Multi-criteria decision making methods to address rural land allocation problems: A systematic review,” Int. Soil Water Conserv. Res., vol. 9, no. 4, pp. 490–501, 2021. [Google Scholar][Crossref]
13.
M. Shao, Z. Han, J. Sun, C. Xiao, S. Zhang, and Y. Zhao, “A review of multi-criteria decision making applications for renewable energy site selection,” Renew. Energy, vol. 157, pp. 377–403, 2020. [Google Scholar][Crossref]
14.
A. Balali, A. Yunusa-kaltungo, and R. Edwards, “A systematic review of passive energy consumption optimisation strategy selection for buildings through multiple criteria decision-making techniques,” Renew. Sustain. Energy Rev., vol. 171, p. 113013, 2023. [Google Scholar][Crossref]
15.
M. Zare, C. Pahl, H. Rahnama, M. Nilashi, A. Mardani, O. Ibrahim, and H. Ahmadi, “Multi-criteria decision making approach in E-learning: A systematic review and classification,” Appl. Soft Comput., vol. 45, pp. 108–128, 2016. [Google Scholar][Crossref]
16.
J. Chai, J. N. K. Liu, and E. W. T. Ngai, “Application of decision-making techniques in supplier selection: A systematic review of literature,” Expert Syst. Appl., vol. 40, no. 10, pp. 3872–3885, 2013. [Google Scholar][Crossref]
17.
S. U. Selvan, S. T. Saroglou, J. Joschinski, M. Calbi, V. Vogler, S. Barath, and Y. J. Grobman, “Toward multi-species building envelopes: A critical literature review of multi-criteria decision-making for design support,” Build. Environ., vol. 231, p. 110006, 2023. [Google Scholar][Crossref]
18.
N. Ibrahim, S. Cox, R. Mills, A. Aftelak, and H. Shah, “Multi-objective decision-making methods for optimising CO2 decisions in the automotive industry,” J. Clean. Prod., vol. 314, p. 128037, 2021. [Google Scholar][Crossref]
19.
P. V. Dos Santos Gonçalves and L. M. S. Campos, “A systemic review for measuring circular economy with multi-criteria methods,” Environ. Sci. Pollut. Res. Int., vol. 29, no. 21, pp. 31597–31611, 2022. [Google Scholar][Crossref]
20.
I. Siksnelyte-butkiene, D. Streimikiene, T. Balezentis, and V. Skulskis, “A systematic literature review of multicriteria decision-making methods for sustainable selection of insulation materials in buildings,” Sustainability (Switzerland), vol. 13, no. 2, pp. 1–21, 2021. [Google Scholar][Crossref]
21.
A. T. De Almeida-filho, D. F. de Lima Silva, L. Ferreira, A. T. De Almeida-filho, D. F. de Lima Silva, and L. Ferreira, “Financial modelling with multiple criteria decision making: A systematic literature review,” J. Oper. Res. Soc., vol. 72, no. 10, pp. 2161–2179, 2021. [Google Scholar][Crossref]
22.
S. Alvarez Gallo and J. Maheut, “Systematic literature review protocol: Multiple-criteria decision-making (MCDM) in urban freight dstribution,” in IoT and Data Science in Engineering Management, Springer, Cham, 2023. [Google Scholar][Crossref]
23.
A. W. S. A. Magableh, Z. M. Kasirun, and A. Aslah, “Multicriteria decision-making model for legacy system modernisation: A systematic literature review,” J. Theor. Appl. Inf. Technol., vol. 100, no. 18, pp. 5492–5517, 2022. [Google Scholar]
24.
A. T. De Almeida, M. H. Alencar, T. V. Garcez, and R. J. P. Ferreira, “A systematic literature review of multicriteria and multi-objective models applied in risk management,” IMA J. Manag. Math., vol. 28, no. 2, pp. 153–184, 2016. [Google Scholar][Crossref]
25.
R. Malemnganbi and B. A. Shimray, “Solar power plant site selection: A systematic literature review on MCDM techniques used,” Lect. Notes Electr. Eng., vol. 686, pp. 37–48, 2020. [Google Scholar][Crossref]
26.
P. Chowdhury and S. K. Paul, “Applications of MCDM methods in research on corporate sustainability,” Manag. Environ. Qual.: An Int. J., vol. 31, no. 2, pp. 385–405, 2020. [Google Scholar][Crossref]
27.
M. Stojčić, E. Zavadskas, D. Pamučar, Ž. Stević, and A. Mardani, “Application of MCDM methods in sustainability engineering: A literature review 2008–2018,” Symmetry, vol. 11, no. 3, p. 350, 2019. [Google Scholar][Crossref]
28.
I. Kaya, M. Çolak, and F. Terzi, “A comprehensive review of fuzzy multi criteria decision making methodologies for energy policy making,” Energy Strateg. Rev., vol. 24, pp. 207–228, 2019. [Google Scholar][Crossref]
29.
P. H. Dos Santos, S. M. Neves, D. O. Sant’anna, C. H. De. Oliveira, and H. D. Carvalho, “The analytic hierarchy process supporting decision making for sustainable development: An overview of applications,” J. Clean. Prod., vol. 212, pp. 119–138, 2019. [Google Scholar][Crossref]
30.
A. Paul, N. Shukla, S. K. Paul, and A. Trianni, “Sustainable supply chain management and multi-criteria decision-making methods: A systematic review,” Sustainability (Switzerland), vol. 13, no. 13, p. 7104, 2021. [Google Scholar][Crossref]
31.
A. Liberati, D. G. Altman, J. Tetzlaff, C. Mulrow, P. C. Gøtzsche, J. P. A. Ioannidis, M. Clarke, P. J. Devereaux, J. Kleijnen, and D. Moher, “The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: Explanation and elaboration,” BMJ, vol. 339, p. b2700, 2009. [Google Scholar][Crossref]
32.
R. F. D. F. Aires and L. Ferreira, “The rank reversal problem in multi-criteria decision making: A literature review,” Pesqui. Oper., vol. 38, no. 2, pp. 331–362, 2018. [Google Scholar][Crossref]
33.
R. N. Pagani, J. L. Kovaleski, and L. M. Resende, “Methodi Ordinatio: A proposed methodology to select and rank relevant scientific papers encompassing the impact factor, number of citation, and year of publication,” Scientometrics, vol. 105, pp. 2109–2135, 2015. [Google Scholar][Crossref]
34.
V. Steffen, M. S. de Oliveira, C. Z. Brusamarello, and F. Trojan, “A new normalized index for ranking papers in systematic literature reviews,” Decis. Anal. J., vol. 10, p. 100439, 2024. [Google Scholar][Crossref]
35.
M. S. D. Oliveira, V. Steffen, and F. Trojan, “Systematic literature review on electric vehicles and multicriteria decision making: Trends, rankings, and future perspectives,” J. Intell. Manag. Decis., vol. 3, no. 1, pp. 22–41, 2024. [Google Scholar][Crossref]
36.
B. Kitchenham, O. Pearl Brereton, D. Budgen, M. Turner, J. Bailey, and S. Linkman, “Systematic literature reviews in software engineering – A systematic literature review,” Inf. Softw. Technol., vol. 51, no. 1, pp. 7–15, 2009. [Google Scholar][Crossref]
37.
R. N. Pagani, J. L. Kovaleski, and L. M. Resende, “Advances in the composition of methodi ordinatio for systematic literature review,” Ci.Inf., Brasília, vol. 46, no. 2, pp. 161–187, 2017. [Google Scholar]
38.
T. L. Saaty, “A scaling method for priorities in hierarchical structures,” J. Math. Psychol., vol. 15, no. 3, pp. 234–281, 1977. [Google Scholar][Crossref]
39.
T. L. Saaty, “Axiomatic foundation of the analytic hierarchy process,” Manag. Sci., vol. 32, no. 7, pp. 841–855, 1986. [Google Scholar]
40.
R. W. Saaty, “The analytic hierarchy process—what it is and how it is used,” Math. Model., vol. 9, no. 3, pp. 161–176, 1987. [Google Scholar][Crossref]
41.
T. L. Saaty, “How to make a decision: The analytic hierarchy process,” Eur. J. Oper. Res., vol. 48, no. 1, pp. 9–26, 1990. [Google Scholar][Crossref]
42.
T. L. Saaty, “Highlights and critical points in the theory and application of the analytic hierarchy process,” Eur. J. Oper. Res., vol. 74, no. 3, pp. 426–447, 1994. [Google Scholar][Crossref]
43.
C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J., vol. 27, no. 3, pp. 379–423, 1948. [Google Scholar][Crossref]
44.
M. S. de Oliveira, V. Steffen, A. C. de Francisco, and F. Trojan, “Integrated data envelopment analysis, multi-criteria decision making, and cluster analysis methods: Trends and perspectives,” Decis. Anal. J., vol. 8, p. 100271, 2023. [Google Scholar][Crossref]
45.
M. S. de Oliveira, V. Steffen, and F. Trojan, “A systematic review of the literature on video assistant referees in soccer: Challenges and opportunities in sports analytics,” Decis. Anal. J., vol. 7, p. 100232, 2023. [Google Scholar][Crossref]
46.
R. Kumar, S. Singh, P. S. Bilga, Jatin, J. Singh, S. Singh, M. Scutaru, and C. I. Pruncu, “Revealing the benefits of entropy weights method for multi-objective optimization in machining operations: A critical review,” J. Mater. Res. Technol., vol. 10, pp. 1471–1492, 2021. [Google Scholar][Crossref]
47.
S. Chakraborty and C. Yeh, “A simulation based comparative study of normalization procedures in multiattribute decision making,” in Proceedings of the 6th WSEAS International Conference on Artificial Intelligence, Knowledge Engineering and Data Bases, Corfu Island, Greece, 2007, pp. 102–109. [Google Scholar]
48.
L. Rosén, P. Back, T. Söderqvist, J. Norrman, P. Brinkhoff, T. Norberg, Y. Volchko, M. Norin, M. Bergknut, and G. Döberl, “SCORE: A novel multi-criteria decision analysis approach to assessing the sustainability of contaminated land remediation,” Sci. Total Environ., vol. 511, pp. 621–638, 2015. [Google Scholar][Crossref]
49.
M. A. Rahman, B. Rusteberg, R. C. Gogu, J. P. Lobo Ferreira, and M. Sauter, “A new spatial multi-criteria decision support tool for site selection for implementation of managed aquifer recharge,” J. Environ. Manage., vol. 99, pp. 61–75, 2012. [Google Scholar][Crossref]
50.
O. E. Demesouka, A. P. Vavatsikos, and K. P. Anagnostopoulos, “Suitability analysis for siting MSW landfills and its multicriteria spatial decision support system: Method, implementation and case study,” Waste Manag., vol. 33, no. 5, pp. 1190–1206, 2013. [Google Scholar][Crossref]
51.
N. R. Galo, L. D. D. R. Calache, and L. C. R. Carpinetti, “A group decision approach for supplier categorization based on hesitant fuzzy and ELECTRE TRI,” Int. J. Prod. Econ., vol. 202, pp. 182–196, 2018. [Google Scholar][Crossref]
52.
M. Dotoli, N. Epicoco, and M. Falagario, “Multi-criteria decision making techniques for the management of public procurement tenders: A case study,” Appl. Soft Comput., vol. 88, p. 106064, 2020. [Google Scholar][Crossref]
53.
P. Ji, H. Zhang, and J. Wang, “Selecting an outsourcing provider based on the combined MABAC–ELECTRE method using single-valued neutrosophic linguistic sets,” Comput. Ind. Eng., vol. 120, pp. 429–441, 2018. [Google Scholar][Crossref]
54.
I. Pergher, E. A. Frej, L. R. P. Roselli, and A. T. De Almeida, “Integrating simulation and FITradeoff method for scheduling rules selection in job-shop production systems,” Int. J. Prod. Econ., vol. 227, p. 107669, 2020. [Google Scholar][Crossref]
55.
H. Akdag, T. Kalaycı, S. Karagöz, H. Zülfikar, and D. Giz, “The evaluation of hospital service quality by fuzzy MCDM,” Appl. Soft Comput., vol. 23, pp. 239–248, 2014. [Google Scholar][Crossref]
56.
F. Ruiz, J. M. Cabello, and B. Pérez-gladish, “Building ease-of-doing-business synthetic indicators using a double reference point approach,” Technol. Forecast. Soc. Change, vol. 131, pp. 130–140, 2018. [Google Scholar][Crossref]
57.
Y. Wu, S. Geng, H. Xu, and H. Zhang, “Study of decision framework of wind farm project plan selection under intuitionistic fuzzy set and fuzzy measure environment,” Energy Convers. Manag., vol. 87, pp. 274–284, 2014. [Google Scholar][Crossref]
58.
B. A. Ozkok and F. Tiryaki, “A compensatory fuzzy approach to multi-objective linear supplier selection problem with multiple-item,” Expert Syst. Appl., vol. 38, no. 9, pp. 11363–11368, 2011. [Google Scholar][Crossref]
59.
A. Shanian and O. Savadogo, “A methodological concept for material selection of highly sensitive components based on multiple criteria decision analysis,” Expert Syst. Appl., vol. 36, no. 2, pp. 1362–1370, 2009. [Google Scholar][Crossref]
60.
F. R. Lima, L. Osiro, L. C. R. Carpinetti, F. R. L. Junior, L. Osiro, L. C. R. Carpinetti, F. R. Lima Junior, L. Osiro, and L. C. R. Carpinetti, “A fuzzy inference and categorization approach for supplier selection using compensatory and non-compensatory decision rules,” Appl. Soft Comput., vol. 13, no. 10, pp. 4133–4147, 2013. [Google Scholar][Crossref]
61.
N. Chitsaz and M. E. Banihabib, “Comparison of different multi criteria decision-making models in prioritizing flood management alternatives,” Water Resour. Manag., vol. 29, no. 8, pp. 2503–2525, 2015. [Google Scholar][Crossref]
62.
M. Carra, G. Maternini, and B. Barabino, “On sustainable positioning of electric vehicle charging stations in cities: An integrated approach for the selection of indicators,” Sustain. Cities Soc., vol. 85, p. 104067, 2022. [Google Scholar][Crossref]
63.
E. Haktanır and C. Kahraman, “A novel picture fuzzy CRITIC & REGIME methodology: Wearable health technology application,” Eng. Appl. Artif. Intell., vol. 113, p. 104942, 2022. [Google Scholar][Crossref]
64.
M. Rahmani, A. Lotfata, E. Zebardast, S. Rastegar, T. W. Sanchez, B. A. Goharrizi, and S. Landi, “Land use suitability assessment for economic development at the provincial level: The case study of Yazd Province, Iran,” Sustain. Cities Soc., vol. 87, p. 104163, 2022. [Google Scholar][Crossref]
65.
M. RogerS and M. Bruen, “A new system for weighting environmental criteria for use within ELECTRE III,” Eur. J. Oper. Res., vol. 107, no. 3, pp. 552–563, 1998. [Google Scholar][Crossref]
66.
R. Chauvy, R. Lepore, P. Fortemps, and G. De Weireld, “Comparison of multi-criteria decision-analysis methods for selecting carbon dioxide utilization products,” Sustain. Prod. Consum., vol. 24, pp. 194–210, 2020. [Google Scholar][Crossref]
67.
J. Wu and P. Tiao, “A validation scheme for intelligent and effective multiple criteria decision-making,” Appl. Soft Comput., vol. 68, pp. 866–872, 2018. [Google Scholar][Crossref]
68.
N. Armaghan and J. Renaud, “An application of multi-criteria decision aids models for case-based reasoning,” Inf. Sci., vol. 210, pp. 55–66, 2012. [Google Scholar][Crossref]
69.
R. S. Ul Haq, M. Saeed, N. Mateen, F. Siddiqui, M. Naqvi, J. B. Yi, and S. Ahmed, “Sustainable material selection with crisp and ambiguous data using single-valued neutrosophic-MEREC-MARCOS framework,” Appl. Soft Comput., vol. 128, p. 109546, 2022. [Google Scholar][Crossref]
70.
D. Bouyssou, “Some remarks on the notion of compensation in MCDM,” Eur. J. Oper. Res., vol. 26, no. 1, pp. 150–160, 1986. [Google Scholar][Crossref]
71.
J. Ren and S. Toniolo, “Interval reference point technique for sustainable industrial processs election under uncertainties,” Sustain. Prod. Consum., vol. 27, pp. 354–371, 2021. [Google Scholar][Crossref]
72.
M. De, B. K. Mangaraj, and K. B. Das, “A fuzzy goal programming model in portfolio selection under competitive-cum-compensatory decision strategies,” Appl. Soft Comput., vol. 73, pp. 635–646, 2018. [Google Scholar][Crossref]
73.
P. Perny, “Multicriteria filtering methods based on concordance and non-discordance principles,” Ann. Oper. Res., vol. 80, pp. 137–166, 1998. [Google Scholar][Crossref]
74.
T. J. Stewart and F. B. Losa, “Towards reconciling outranking and value measurement practice,” Eur. J. Oper. Res., vol. 145, no. 3, pp. 645–659, 2003. [Google Scholar][Crossref]
75.
S. Cap, P. Bots, and L. Scherer, “Environmental, nutritional and social assessment of nuts,” Sustain. Sci., vol. 18, no. 2, pp. 933–949, 2022. [Google Scholar][Crossref]
76.
S. M. Pande, K. N. Papamichail, and P. Kawalek, “Compatibility effects in the prescriptive application of psychological heuristics: Inhibition, integration and selection,” Eur. J. Oper. Res., vol. 295, no. 3, pp. 982–995, 2021. [Google Scholar][Crossref]
77.
A. M. Edjossan-sossou, D. Galvez, O. Deck, M. Al Heib, T. Verdel, L. Dupont, O. Chery, M. Camargo, and L. Morel, “Sustainable risk management strategy selection using a fuzzy multi-criteria decision approach,” Int. J. Disaster Risk Reduct., vol. 45, p. 101474, 2020. [Google Scholar][Crossref]
78.
C. Pasche, “EXTRA: An expert system for multicriteria decision making,” Eur. J. Oper. Res., vol. 52, no. 2, pp. 224–234, 1991. [Google Scholar][Crossref]
79.
E. Czogał and M. Roubens, “An approach to multi-criteria decision making problems using probabilistic set theory,” Eur. J. Oper. Res., vol. 43, no. 3, pp. 263–266, 1989. [Google Scholar][Crossref]
80.
N. Sousa, A. Almeida, and J. Coutinho-rodrigues, “A multicriteria methodology for estimating consumer acceptance of alternative powertrain technologies,” Transp. Policy, vol. 85, pp. 18–32, 2020. [Google Scholar][Crossref]
81.
M. Bezoui, A. Olteanu, and M. Sevaux, “Integrating preferences within multiobjective flexible job shop scheduling,” Eur. J. Oper. Res., vol. 305, no. 3, pp. 1079–1086, 2023. [Google Scholar][Crossref]
82.
B. Vidal, A. Hedström, S. Barraud, E. Kärrman, and I. Herrmann, “Assessing the sustainability of on-site sanitation systems using multi-criteria analysis,” Environ. Sci.: Water Res. Technol., vol. 5, no. 9, pp. 1599–1615, 2019. [Google Scholar][Crossref]
83.
K. Belahcène, C. Labreuche, N. Maudet, V. Mousseau, and W. Ouerdane, “An efficient SAT formulation for learning multiple criteria non-compensatory sorting rules from examples,” Comput. Oper. Res., vol. 97, pp. 58–71, 2018. [Google Scholar][Crossref]
84.
M. E. Banihabib and M. H. Shabestari, “Decision models for the ranking of agricultural water demand management strategies in an arid region,” Irrig. Drain., vol. 66, no. 5, pp. 773–783, 2017. [Google Scholar][Crossref]
85.
M. Jelokhani-niaraki and J. Malczewski, “The decision task complexity and information acquisition strategies in GIS-MCDA,” Int. J. Geogr. Inf. Sci., vol. 29, no. 2, pp. 327–344, 2015. [Google Scholar][Crossref]
86.
T. V. Garcez, H. T. Cavalcanti, and A. T. De Almeida, “A hybrid decision support model using grey relationalanalysis and the additive-veto model for solving multicriteria decision-making problems: An approach to supplier selection,” Ann. Oper. Res., vol. 304, no. 1–2, pp. 199–231, 2021. [Google Scholar][Crossref]
87.
J. R. Rao and N. Roy, “Use of tranquility in determining the numerical compensation for a fuzzy multicriteria decision making problem,” Comput. Oper. Res., vol. 17, no. 1, pp. 97–103, 1990. [Google Scholar][Crossref]
88.
V. Benoit and P. Rousseaux, “Aid for aggregating the impacts in life cycle assessment,” Int. J. Life Cycle Assess., vol. 8, no. 2, pp. 74–82, 2003. [Google Scholar][Crossref]
89.
H. Ayadi, N. Hamani, L. Kermad, and M. Benaissa, “Novel fuzzy composite indicators for locating a logistics platform under sustainability perspectives,” Sustainability, vol. 13, no. 7, 2021. [Google Scholar][Crossref]
90.
H. Lau, D. Nakandala, and P. K. Shum, “A business process decision model for fresh-food supplier evaluation,” Bus. Process Manag. J., vol. 24, no. 3, pp. 716–744, 2018. [Google Scholar][Crossref]
91.
F. Wang, L. Chen, and C. Su, “Location selection using fuzzy-connective-based aggregation networks: A case study of the food and beverage chain industry in Taiwan,” Neural Comput. Appl., vol. 26, no. 1, pp. 161–170, 2014. [Google Scholar][Crossref]
92.
R. Rajesh and B. Aljabhan, “A novel grey stratified decision-making (GSDM) model for social sustainability-based supplier selection,” EEE Trans. Comput. Soc. Syst., pp. 1–15, 2022. [Google Scholar][Crossref]
93.
M. Cunha, J. Marques, and D. Savić, “A flexible approach for the reinforcement of water networks using multi-criteria decision analysis,” Water Resour. Manag., vol. 34, no. 14, pp. 4469–4490, 2020. [Google Scholar][Crossref]
94.
P. R. S. Bezerra, F. Schramm, and V. B. Schramm, “A multicriteria model, based on the PROMETHEE II, for assessing corporate sustainability,” Clean Technol. Environ. Policy, vol. 23, no. 10, pp. 2927–2940, 2021. [Google Scholar][Crossref]
95.
A. Tlili, O. Khaled, V. Mousseau, and W. Ouerdane, “Interactive portfolio selection involving multicriteria sorting models,” Ann. Oper. Res., vol. 325, no. 2, pp. 1169–1195, 2022. [Google Scholar][Crossref]
96.
C. Chen and P. Hung, “Multicriteria synthesis of flexible heat-exchanger networks with uncertain source-stream temperatures,” Chem. Eng. Process.: Process Intensif., vol. 44, no. 1, pp. 89–100, 2005. [Google Scholar][Crossref]
97.
M. C. Cunha, D. Serpa, J. Marques, J. J. Keizer, and N. Abrantes, “On sustainable improvements of agricultural practices in the Bairrada region (Portugal),” Environ. Dev. Sustain., vol. 25, no. 3, pp. 2735–2757, 2023. [Google Scholar][Crossref]
98.
D. V. S. Pereira and C. M. M. Mota, “Human development index based on ELECTRE TRI-C multicriteria method: An application in the city of Recife,” Soc. Indic. Res., vol. 125, no. 1, pp. 19–45, 2014. [Google Scholar][Crossref]
99.
A. S. Milani and A. Shanian, “Gear material selection with uncertain and incomplete data. Material performance indices and decision aid model,” Int. J. Mech. Mater. Des., vol. 3, no. 3, pp. 209–222, 2006. [Google Scholar][Crossref]
100.
A. Garcia-bernabeu, J. M. Cabello, and F. Ruiz, “A multi-criteria reference point based approach for assessing regional innovation performance in Spain,” Mathematics, vol. 8, no. 5, 2020. [Google Scholar][Crossref]
101.
W. Liang, B. Dai, G. Zhao, and H. Wu, “Performance evaluation of green mine using a combined multi-criteria decision making method with picture fuzzy information,” IEEE Access, vol. 7, pp. 174139–174154, 2019. [Google Scholar][Crossref]
102.
Z. Chen and S. Luo, “Evaluate teaching quality of physical education using a hybrid multi-criteria decision-making framework,” PLoS ONE, vol. 18, no. 2, p. e0280845, 2023. [Google Scholar][Crossref]
103.
C. Michailidou, V. Gkioulos, A. Shalaginov, A. Rizos, and A. Saracino, “RESPOnSE-A framework for enforcing risk-aware security policies in constrained dynamic environments,” Sensors, vol. 20, no. 10, p. 2960, 2020. [Google Scholar][Crossref]
104.
L. O. G. M. D. C. Silva and G. B. A. Lima, “Global Innovation Indicators analysed by multicriteria decision,” Braz. J. Oper. Prod. Manag., vol. 17, no. 4, 2020. [Google Scholar][Crossref]
105.
A. L. de Oliveira e Silva, C. A. V. Cavalcante, and N. V. C. de Vasconcelos, “A multicriteria decision model to support the selection of suppliers of motor repair services,” Int. J. Adv. Manuf. Technol., vol. 84, no. 1–4, pp. 523–532, 2015. [Google Scholar][Crossref]
106.
N. Zaredar and M. M. K. Zarkesh, “Examination of compensatory model application in site selection,” Environ. Monit. Assess., vol. 184, no. 1, pp. 397–404, 2012. [Google Scholar][Crossref]
107.
G. Horton and J. Goers, “ABX-LEX: An argument-driven approach for the digital facilitation of efficient group decisions,” Int. J. Inf. Technol. Decis. Mak., vol. 20, no. 1, pp. 137–164, 2021. [Google Scholar][Crossref]
108.
S. Kheybari, “Adjusting trade-offs in multi-criteria decision-making problems,” Int. J. Inf. Technol. Decis. Mak., vol. 20, no. 5, pp. 1499–1517, 2021. [Google Scholar][Crossref]
109.
T. C. Cavalcante Nepomuceno, C. Daraio, and A. P. Cabral Seixas Costa, “Combining multi-criteria and directional distances to decompose non-compensatory measures of sustainable banking efficiency,” Appl. Econ. Lett., vol. 27, no. 4, pp. 329–334, 2019. [Google Scholar][Crossref]
110.
J. Sepulveda, J. Gonzalez, M. Alfaro, and M. Camargo, “A metrics-based diagnosis tool for enhancing innovation capabilities in SMEs,” Int. J. Comput. Commun. Control, vol. 5, no. 5, p. 919, 2010. [Google Scholar][Crossref]
111.
R. D. Cóndor, A. Scarelli, and R. Valentini, “Multicriteria decision aid to support multilateral environmental agreements in assessing international forestry projects,” Int. Environ. Agree.: Polit. Law Econ., vol. 11, no. 2, pp. 117–137, 2010. [Google Scholar][Crossref]
112.
N. Khademi, A. S. Mohaymany, and J. Shahi, “Intelligent transportation system user service selection and prioritization,” Transp. Res. Rec., vol. 2189, no. 1, pp. 45–55, 2010. [Google Scholar][Crossref]
113.
L. A. Oliveira, S. Burattino Melhado, and F. Vittorino, “Selection of building technology based on sustainability requirements – Brazilian context,” Archit. Eng. Des. Manag., vol. 11, no. 5, pp. 390–404, 2015. [Google Scholar][Crossref]
114.
M. Gupta and B. K. Mohanty, “Finding the numerical compensation in multiple criteria decision-making problems under fuzzy environment,” Int. J. Syst. Sci., vol. 48, no. 6, pp. 1301–1310, 2017. [Google Scholar][Crossref]
115.
M. E. Banihabib, N. Chitsaz, and T. O. Randhir, “Non-compensatory decision model for incorporating the sustainable development criteria in flood risk management plans,” SN Appl. Sci., vol. 2, no. 1, 2019. [Google Scholar][Crossref]
116.
M. A. De Vicente Oliva and A. Romero-ania, “Improved multidimensional quality of life index based on outranking relations,” Axioms, vol. 12, no. 1, p. 41, 2022. [Google Scholar][Crossref]
117.
M. P. Basilio, V. Pereira, and H. G. Costa, “Classifying the integrated public safety areas (IPSAs): Aa multi-criteria based approach,” J. Model. Manag., vol. 14, no. 1, pp. 106–133, 2019. [Google Scholar][Crossref]
118.
M. N. Yahya, H. Gökçekuş, D. U. Ozsahin, and B. Uzun, “Evaluation of wastewater treatment technologies using TOPSIS,” Desalin. Water Treat., vol. 177, pp. 416–422, 2020. [Google Scholar][Crossref]
119.
A. T. De Almeida, “Additive-Veto models for choice and ranking multicriteria decision problems,” Asia-Pac. J. Oper. Res., vol. 30, no. 06, p. 1350026, 2013. [Google Scholar][Crossref]
120.
M. M. K. Zarkesh, E. Sharifi, and N. Almasi, “Degradation mitigation management of recreational watersheds by selecting the most suitable action plan based on multi-criteria decision-making methods,” Pol. J. Environ. Stud., vol. 21, no. 5, pp. 1481–1487, 2012. [Google Scholar]
121.
M. M. Zizovic, N. Damljanovic, and M. R. Zizovic, “Multi-criteria decision making method for models with the dominant criterion,” Filomat, vol. 31, no. 10, pp. 2981–2989, 2017. [Google Scholar][Crossref]
122.
C. A. E Costa and P. Vincke, “Measuring credibility of compensatory preference statements when trade-offs are interval determined,” Theory Decis., vol. 39, no. 2, pp. 127–155, 1995. [Google Scholar][Crossref]
123.
S. Choudhury and A. K. Saha, “Prediction of operation efficiency of water treatment plant with the help of multi-criteria decision-making,” Water Conserv. Sci. Eng., vol. 3, no. 2, pp. 79–90, 2018. [Google Scholar][Crossref]
124.
S. A. Darestani, M. Azizi, and S. Qavami, “Solving multi-objective supplier selection model using a compensatory approach,” J. Ind. Prod. Eng., vol. 32, no. 6, pp. 387–395, 2015. [Google Scholar][Crossref]
125.
J. Khosravi, M. A. Asoodar, M. R. Alizadeh, and M. H. Peyman, “Application of multiple criteria decision making system compensatory (TOPSIS) in selecting of rice milling system,” World Appl. Sci. J., vol. 13, no. 11, pp. 2306–2311, 2011. [Google Scholar]
126.
H. G. Costa, A. F. U. Mansur, A. L. P. Freitas, and R. A. De Carvalho, “ELECTRE TRI applied to costumers satisfaction evaluation [ELECTRE TRI aplicado a avaliação da satisfação de consumidores],” Producao, vol. 17, no. 2, pp. 230–245, 2007. [Google Scholar][Crossref]
127.
M. Niromand, R. Mikaeil, and M. Advay, “Assessment of the slope stability under geological conditions using fdahp-topsis (A case study for sungun open pit mine),” J. Soft Comput. Civ. Eng., vol. 5, no. 4, pp. 21–40, 2021. [Google Scholar][Crossref]
128.
H. G. Costa, L. D. de Oliveira Nepomuceno, and V. Pereira, “Electre me: A proposal of an outranking modeling in situations with several evaluators,” Braz. J. Oper. Prod. Manag., vol. 15, no. 4, pp. 566–575, 2018. [Google Scholar][Crossref]
129.
F. Shahrivar, M. Mahmoodian, and C. Q. Li, “Comparative analysis of fuzzy multi-criteria decision-making methods in maintenance prioritisation of infrastructure assets,” Int. J. Crit. Infrastruct., vol. 18, no. 2, pp. 172–195, 2022. [Google Scholar]
130.
M. E. Fontana, V. S. Nepomuceno, and T. V. Garcez, “A hybrid approach development to solving the storage location assignment problem in a picker-to-parts system,” Braz. J. Oper. Prod. Manag., vol. 17, no. 1, pp. 1–14, 2020. [Google Scholar][Crossref]
131.
N. Hoppen and M. L. Löbler, “Traitement de l’information et strategies de décision lors de l’interaction avec un SAD multicritère,” J. Decis. Syst., vol. 15, no. 4, pp. 339–360, 2006. [Google Scholar][Crossref]
132.
I. Brigui-chtioui and I. Saadnd, “Measuring immaterial capitalapital for organizations using multicriteria reference point model,” Int. J. Bus., vol. 16, no. 3, pp. 263–271, 2011. [Google Scholar]
133.
A. C. Marques, L. C. Machado, L. M. de Morais Correia, M. J. Leal Vieira, M. Da Silva, M. F. De Lima, P. P. do Espírito Santo, D. C. Morais, and E. A. Frej, “Support for multicriteria group decision with voting procedures: Selection of electricity generation technologies,” Clean. Environ. Syst., vol. 3, p. 100060, 2021. [Google Scholar][Crossref]
134.
O. Oladipupo, T. Amoo, and O. Daramola, “A decision-making approach for ranking tertiary institutions’ service quality using fuzzy MCDM and extended HiEdQUAL model,” Appl. Comput. Intell. Soft Comput., vol. 2021, pp. 1–19, 2021. [Google Scholar][Crossref]
135.
D. M. De Genaro Chiroli, E. A. B. Solek, R. S. Oliveira, B. M. L. Barboza, R. P. De Campos, J. L. Kovaleski, S. M. Tebecherani, and F. Trojan, “Using multi-criteria analysis for smart city assessment,” Cidades, vol. 44, pp. 154–179, 2022. [Google Scholar][Crossref]
136.
A. L. de Lima da Silva, A. P. Cabral Seixas Costa, and A. T. De Almeida, “Analysis of the cognitive aspects of the preference elicitation process in the compensatory context: A neuroscience experiment with FITradeoff,” Int. Trans. Oper. Res., vol. 31, no. 4, pp. 2472–2503, 2022. [Google Scholar][Crossref]
137.
T. Tukino, H. Hendry, E. Sediyono, A. Fauzi, and A. Lia, “Systematic literature review multi-criteria decision-making method: Criteria weights and alternative ranking,” in AIP Conference Proceedings, AIP Publishing, 2024. [Google Scholar][Crossref]
138.
D. Maček, I. Magdalenić, and N. B. Ređep, “A systematic literature review on the application of multicriteria decision making methods for information security risk assessment,” Int. J. Saf. Secur. Eng., vol. 10, no. 2, pp. 161–174, 2020. [Google Scholar][Crossref]
139.
M. Yazdani, “An integrated MCDM approach to green supplier selection,” Int. J. Ind. Eng. Comput., vol. 5, no. 3, pp. 443–458, 2014. [Google Scholar][Crossref]