Javascript is required
Beck, J. C. (1999). Geriatrics Review Syllabus: A Core Curriculum in Geriatric Medicine. Kendall/Hunt Publishing Company, Dubuque, IA, US. [Google Scholar]
Canayaz, M. (2021). C+EffxNet: A novel hybrid approach for COVID-19 diagnosis on CT images based on CBAM and EfficientNet. Chaos, Solitons Fractals, 151, 111310. [Google Scholar] [Crossref]
Chan, H. L., Ouyang, Y., Chen, R. S., Lai, Y. H., Kuo, C. C., Liao, G. S., Hsu, W. Y., & Chang, Y. J. (2023). Deep neural network for the detections of fall and physical activities using foot pressures and inertial sensing. Sensors, 23(1), 495. [Google Scholar] [Crossref]
Gao, W. D. & Zhao, Z. W. (2021). Gait phase recognition using fuzzy logic regulation with multisensor data fusion. J. Sens., 2021, 1–13. [Google Scholar] [Crossref]
Li, B. C., Yao, Z. M., Wang, J. G., Wang, S. N., Yang, X. J., & Sun, Y. N. (2020). Improved deep learning technique to detect freezing of gait in Parkinson’s disease based on wearable sensors. Electronics, 9(11), 1919. [Google Scholar] [Crossref]
Liang, S. Y., Liu, Y. M., Li, G. L., & Zhao, G. R. (2019). Elderly fall risk prediction with plantar center of force using convlstm algorithm. In 2019 IEEE International Conference on Cyborg and Bionic Systems (CBS), Munich, Germany (pp. 36–41). [Google Scholar] [Crossref]
Liang, S. Y., Ning, Y. K., Li, H. Q., Wang, L., Mei, Z. Y., Ma, Y. N., & Zhao, G. R. (2015). Feature selection and predictors of falls with foot force sensors using KNN-Based algorithms. Sensors, 15(11), 29393–29407. https://doi.org/ [Google Scholar] [Crossref]
Liu, X. G., Chen, M., Liang, T., Lou, C. G., Wang, H. R., & Liu, X. L. (2022). A lightweight double-channel depthwise separable convolutional neural network for multimodal fusion gait recognition. Math. Biosci. Eng., 19, 1195–1212. [Google Scholar] [Crossref]
Montanini, L., Del Campo, A., Perla, D., Spinsante, S., & Gambi, E. (2017). A footwear-based methodology for fall detection. IEEE Sens. J., 18(3), 1233–1242. [Google Scholar] [Crossref]
Pardoel, S., Shalin, G., Nantel, J., Lemaire, E. D., & Kofman, J. (2021). Early detection of freezing of gait during walking using inertial measurement unit and plantar pressure distribution data. Sensors, 21(6), 2246. [Google Scholar] [Crossref]
Peng, X. H., Feng, Y. K., Ji, S. J., Amos, J. T., Wang, W. N., Li, M., Ai, S. L., Qiu, X. Z., Dong, Y. Y., Ma, D., Yao, D. Z., Valdes-Sosa, P. A., & Ren, P. (2021). Gait analysis by causal decomposition. IEEE Trans. Neural. Syst. Rehabil. Eng., 29, 953–964. [Google Scholar] [Crossref]
Podsiadlo, D. & Richardson, S. J. (1991). The Timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatrics Soc., 39(2), 142–148. [Google Scholar] [Crossref]
Raîche, M., Hébert, R., Prince, F., & Corriveau, H. (2000). Screening older adults at risk of falling with the Tinetti balance scale. The Lancet, 356(9234), 1001–1002. [Google Scholar] [Crossref]
Shalin, G., Pardoel, S., Lemaire, E. D., Nantel, J., & Kofman, J. (2021). Prediction and detection of freezing of gait in Parkinson’s disease from plantar pressure data using long short-term memory neural-networks. J. Neuroengineering Rehabil., 18(1), 1–15. [Google Scholar] [Crossref]
Shumway-Cook, A., Brauer, S., & Woollacott, M. (2000). Predicting the probability for falls in community-dwelling older adults using the Timed Up & Go Test. Phys. Therapy, 80(9), 896–903. [Google Scholar] [Crossref]
Tan, M. & Le, Q. V. (2019). EfficientNet: Rethinking model scaling for convolutional neural networks. arXiv Preprint, 11946, arXiv: 1905.11946. [Google Scholar]
Taylor, A. J., Menz, H. B., & Keenan, A. M. (2004). Effects of experimentally induced plantar insensitivity on forces and pressures under the foot during normal walking. Gait Posture, 20(3). [Google Scholar] [Crossref]
Tinetti, M. E. (1986). Performance-oriented assessment of mobility problems in elderly patients. J. Am. Geriatrics Soc., 34(2), 119–126. [Google Scholar] [Crossref]
Wang, H. X., Zhang, Z. G., Cui, X., & Cui, R. Y. (2022). Chinese-Korean Weibo sentiment classification based on pre-trained language model and transfer learning. In 2022 IEEE 2nd International Conference on Computer Communication and Artificial Intelligence (CCAI), Beijing, China (pp. 49–54). [Google Scholar] [Crossref]
Wang, Z. G. & Oates, T. (2015). Imaging time-series to improve classification and imputation. arXiv Preprint, 00327, arXiv:1506.00327. [Google Scholar] [Crossref]
Woo, S., Park, J., Lee, J. Y., & Kweon, I. S. (2018). Cbam: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany (pp. 3–19). [Google Scholar] [Crossref]
Yu, J. C., Gao, W. D., & Jiang, W. N. (2020). Foot pronation detection based on plantar pressure measurement. J. Phys. Conf. Ser., 1646(1), 012041. [Google Scholar] [Crossref]
Zhao, S. M., Liu, R., Fei, C. W., Zia, A. W., & Jing, L. X. (2020). Flexible sensor matrix film-based wearable plantar pressure force measurement and analysis system. PLoS One, 15(8), e0237090. [Google Scholar] [Crossref]
  • statusCode :500
  • fatal :false
  • unhandled :false
  • __nuxt_error :true