V. K. Trivedi, P. K. Shukla, and A. Pandey, “Automatic segmentation of plant leaves disease using min-max hue histogram and k-mean clustering,” Multimed. Tools Appl., vol. 81, pp. 20201–20228, 2022. [Google Scholar][Crossref]
2.
T. Tian, H. Wang, S. Kwong, and C. C. J. Kuo, “Perceptual image compression with block-level just noticeable difference prediction,” ACM Trans. Multimedia Comput. Commun. Appl., vol. 16, no. 4, pp. 1–15, 2021. [Google Scholar][Crossref]
3.
S. K. Pravin Kumar, M. G. Sumithra, and N. Saranya, “Artificial bee colony based fuzzy C means (ABC-FCM) segmentation algorithm and dimensionality reduction for leaf disease detection in bioinformatics,” J. Supercomput., vol. 75, pp. 8293–8311, 2019. [Google Scholar][Crossref]
4.
M. Aggarwal, V. Khullar, N. Goyal, A. Singh, A. Tolba, E. B. Thompson, and S. Kumar, “Pre-trained deep neural network-based features selection supported machine learning for rice leaf disease classification,” Agriculture, vol. 13, no. 5, p. 936, 2023. [Google Scholar][Crossref]
5.
S. Jeong, S. Jeong, and J. Bong, “Detection of tomato leaf miner using deep neural network,” Sensors, vol. 22, no. 24, p. 9959, 2022. [Google Scholar][Crossref]
6.
B. Natesan, A. Singaravelan, J. L. Hsu, Y. H. Lin, B. Lei, and C. M. Liu, “Channel-spatial segmentation network for classifying leaf diseases,” Agriculture, vol. 12, no. 11, p. 1886, 2022. [Google Scholar][Crossref]
7.
M. G. Lanjewar and K. G. Panchbhai, “Convolutional neural network based tea leaf disease prediction system on smart phone using paas cloud,” Neural Comput. Appl., vol. 35, pp. 2755–2771, 2023. [Google Scholar][Crossref]
8.
M. Sibiya and M. Sumbwanyambe, “Automatic fuzzy logic-based maize common rust disease severity predictions with thresholding and deep learning,” Pathogens, vol. 10, no. 2, p. 131, 2021. [Google Scholar][Crossref]
9.
N. G. Rezk, A.-F. Attia, M. A. El-Rashidy, A. El-Sayed, and E. E.-D. Hemdan, “An efficient plant disease recognition system using hybrid convolutional neural networks (CNNs) and conditional random fields (CRFs) for smart IoT applications in agriculture,” Int. J. Comput. Intell. Syst., vol. 15, p. 65, 2022. [Google Scholar][Crossref]
10.
J. A. Wani, S. Sharma, M. Muzamil, S. Ahmed, S. Sharma, and S. Singh, “Machine learning and deep learning based computational techniques in automatic agricultural diseases detection: Methodologies, applications, and challenges,” Arch. Comput. Methods Eng., vol. 29, pp. 641–677, 2022. [Google Scholar][Crossref]
11.
M. S. Islam, S. Sultana, F. A. Farid, M. N. Islam, M. Rashid, B. S. Bari, N. Hashim, and M. N. Husen, “Multimodal hybrid deep learning approach to detect tomato leaf disease using attention based dilated convolution feature extractor with logistic regression classification,” Sensors, vol. 22, no. 16, p. 6079, 2022. [Google Scholar][Crossref]
12.
B. Liu, R. H. Kun, J. X. Li, A. H. Yuan, N. N. Duan, and H. X. Zhang, “RE-RCNN: A novel representation-enhanced RCNN model for early apple leaf disease detection,” ACM Trans. Sen. Netw., 2023. [Google Scholar][Crossref]
13.
K. G. Devi, K. Balasubramanian, C. Senthilkumar, and K. Ramya, “Accurate prediction and classification of corn leaf disease using adaptive moment estimation optimizer in deep learning networks,” J. Electr. Eng. Technol., vol. 18, pp. 637–649, 2023. [Google Scholar][Crossref]
14.
Y. F. Zhao, Z. Chen, W. L. Song, X. Gao, J. F. Hu, Q. Xiong, and Z. C. Zhang, “Plant disease detection using generated leaves based on DoubleGAN,” IEEE/ACM Trans. Comput. Biol. Bioinf., vol. 19, no. 3, pp. 1817–1826, 2021. [Google Scholar][Crossref]
15.
A. Creswell, T. White, V. Dumoulin, K. Arulkumaran, B. Sengupta, and A. A. Bharath, “Generative adversarial networks: An overview,” IEEE Signal Process. Mag., vol. 35, no. 1, pp. 53–65, 2018. [Google Scholar][Crossref]
16.
C. Z. Yang, L. C. Fang, Q. Yu, and H. Wei, “A learning robust and discriminative shape descriptor for plant species identification,” IEEE ACM Trans. Comput. Biol. Bioinf., vol. 20, no. 1, pp. 39–51, 2022. [Google Scholar][Crossref]
17.
E. U. Yaylaci, E. Oner, M. Yaylaci, M. E. Ozdemir, A. Abushattal, and A. Birinci, “Application of artificial neural networks in the analysis of the continuous contact problem,” Struct. Eng. Mech., vol. 84, no. 1, pp. 35–48, 2022. [Google Scholar][Crossref]
18.
E. U. Yaylaci, M. Yaylaci, M. E. Ozdemir, M. Terzi, and S. Ozturk, “Analyzing the mechano-bactericidal effect of nano-patterned surfaces by finite element method and verification with artificial neural networks,” Advances in Nano Research, vol. 15, no. 2, pp. 165–174, 2023. [Google Scholar][Crossref]
19.
M. YayIaci, E. U. YayIaci, M. E. Ozdemir, S. Ay, and S. Ozturk, “Implementation of finite element and artificial neural network methods to analyze the contact problem of a functionally graded layer containing crack,” Steel Compos. Struct., vol. 45, no. 4, pp. 501–511, 2022. [Google Scholar][Crossref]
20.
M. Rajagopala, S. Kayikcib, M. Abbasc, and R. Sivasakthiveld, “A novel technique for leaf disease classification using Legion Kernels with parallel support vector machine (LK-PSVM) and fuzzy C means image segmentation,” Heliyon, vol. 10, no. 12, p. e32707, 2024. [Google Scholar][Crossref]